1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
// Generated from quat.rs.tera template. Edit the template, not the generated file.

use crate::{
    euler::{EulerFromQuaternion, EulerRot, EulerToQuaternion},
    sse2::*,
    DQuat, FloatEx, Mat3, Mat3A, Mat4, Vec2, Vec3, Vec3A, Vec4,
};

#[cfg(feature = "libm")]
#[allow(unused_imports)]
use num_traits::Float;

#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;

#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::ops::{Add, Deref, DerefMut, Div, Mul, MulAssign, Neg, Sub};

union UnionCast {
    a: [f32; 4],
    v: Quat,
}

/// Creates a quaternion from `x`, `y`, `z` and `w` values.
///
/// This should generally not be called manually unless you know what you are doing. Use
/// one of the other constructors instead such as `identity` or `from_axis_angle`.
#[inline]
pub const fn quat(x: f32, y: f32, z: f32, w: f32) -> Quat {
    Quat::from_xyzw(x, y, z, w)
}

/// A quaternion representing an orientation.
///
/// This quaternion is intended to be of unit length but may denormalize due to
/// floating point "error creep" which can occur when successive quaternion
/// operations are applied.
///
/// This type is 16 byte aligned.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Quat(pub(crate) __m128);

impl Quat {
    /// All zeros.
    const ZERO: Self = Self::from_array([0.0; 4]);

    /// The identity quaternion. Corresponds to no rotation.
    pub const IDENTITY: Self = Self::from_xyzw(0.0, 0.0, 0.0, 1.0);

    /// All NANs.
    pub const NAN: Self = Self::from_array([f32::NAN; 4]);

    /// Creates a new rotation quaternion.
    ///
    /// This should generally not be called manually unless you know what you are doing.
    /// Use one of the other constructors instead such as `identity` or `from_axis_angle`.
    ///
    /// `from_xyzw` is mostly used by unit tests and `serde` deserialization.
    ///
    /// # Preconditions
    ///
    /// This function does not check if the input is normalized, it is up to the user to
    /// provide normalized input or to normalized the resulting quaternion.
    #[inline(always)]
    pub const fn from_xyzw(x: f32, y: f32, z: f32, w: f32) -> Self {
        unsafe { UnionCast { a: [x, y, z, w] }.v }
    }

    /// Creates a rotation quaternion from an array.
    ///
    /// # Preconditions
    ///
    /// This function does not check if the input is normalized, it is up to the user to
    /// provide normalized input or to normalized the resulting quaternion.
    #[inline]
    pub const fn from_array(a: [f32; 4]) -> Self {
        Self::from_xyzw(a[0], a[1], a[2], a[3])
    }

    /// Creates a new rotation quaternion from a 4D vector.
    ///
    /// # Preconditions
    ///
    /// This function does not check if the input is normalized, it is up to the user to
    /// provide normalized input or to normalized the resulting quaternion.
    #[inline]
    pub fn from_vec4(v: Vec4) -> Self {
        Self(v.0)
    }

    /// Creates a rotation quaternion from a slice.
    ///
    /// # Preconditions
    ///
    /// This function does not check if the input is normalized, it is up to the user to
    /// provide normalized input or to normalized the resulting quaternion.
    ///
    /// # Panics
    ///
    /// Panics if `slice` length is less than 4.
    #[inline]
    pub fn from_slice(slice: &[f32]) -> Self {
        assert!(slice.len() >= 4);
        Self(unsafe { _mm_loadu_ps(slice.as_ptr()) })
    }

    /// Writes the quaternion to an unaligned slice.
    ///
    /// # Panics
    ///
    /// Panics if `slice` length is less than 4.
    #[inline]
    pub fn write_to_slice(self, slice: &mut [f32]) {
        assert!(slice.len() >= 4);
        unsafe { _mm_storeu_ps(slice.as_mut_ptr(), self.0) }
    }

    /// Create a quaternion for a normalized rotation `axis` and `angle` (in radians).
    /// The axis must be normalized (unit-length).
    ///
    /// # Panics
    ///
    /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
    #[inline]
    pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
        glam_assert!(axis.is_normalized());
        let (s, c) = (angle * 0.5).sin_cos();
        let v = axis * s;
        Self::from_xyzw(v.x, v.y, v.z, c)
    }

    /// Create a quaternion that rotates `v.length()` radians around `v.normalize()`.
    ///
    /// `from_scaled_axis(Vec3::ZERO)` results in the identity quaternion.
    #[inline]
    pub fn from_scaled_axis(v: Vec3) -> Self {
        let length = v.length();
        if length == 0.0 {
            Self::IDENTITY
        } else {
            Self::from_axis_angle(v / length, length)
        }
    }

    /// Creates a quaternion from the `angle` (in radians) around the x axis.
    #[inline]
    pub fn from_rotation_x(angle: f32) -> Self {
        let (s, c) = (angle * 0.5).sin_cos();
        Self::from_xyzw(s, 0.0, 0.0, c)
    }

    /// Creates a quaternion from the `angle` (in radians) around the y axis.
    #[inline]
    pub fn from_rotation_y(angle: f32) -> Self {
        let (s, c) = (angle * 0.5).sin_cos();
        Self::from_xyzw(0.0, s, 0.0, c)
    }

    /// Creates a quaternion from the `angle` (in radians) around the z axis.
    #[inline]
    pub fn from_rotation_z(angle: f32) -> Self {
        let (s, c) = (angle * 0.5).sin_cos();
        Self::from_xyzw(0.0, 0.0, s, c)
    }

    #[inline]
    /// Creates a quaternion from the given Euler rotation sequence and the angles (in radians).
    pub fn from_euler(euler: EulerRot, a: f32, b: f32, c: f32) -> Self {
        euler.new_quat(a, b, c)
    }

    /// From the columns of a 3x3 rotation matrix.
    #[inline]
    pub(crate) fn from_rotation_axes(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Self {
        // Based on https://github.com/microsoft/DirectXMath `XM$quaternionRotationMatrix`
        let (m00, m01, m02) = x_axis.into();
        let (m10, m11, m12) = y_axis.into();
        let (m20, m21, m22) = z_axis.into();
        if m22 <= 0.0 {
            // x^2 + y^2 >= z^2 + w^2
            let dif10 = m11 - m00;
            let omm22 = 1.0 - m22;
            if dif10 <= 0.0 {
                // x^2 >= y^2
                let four_xsq = omm22 - dif10;
                let inv4x = 0.5 / four_xsq.sqrt();
                Self::from_xyzw(
                    four_xsq * inv4x,
                    (m01 + m10) * inv4x,
                    (m02 + m20) * inv4x,
                    (m12 - m21) * inv4x,
                )
            } else {
                // y^2 >= x^2
                let four_ysq = omm22 + dif10;
                let inv4y = 0.5 / four_ysq.sqrt();
                Self::from_xyzw(
                    (m01 + m10) * inv4y,
                    four_ysq * inv4y,
                    (m12 + m21) * inv4y,
                    (m20 - m02) * inv4y,
                )
            }
        } else {
            // z^2 + w^2 >= x^2 + y^2
            let sum10 = m11 + m00;
            let opm22 = 1.0 + m22;
            if sum10 <= 0.0 {
                // z^2 >= w^2
                let four_zsq = opm22 - sum10;
                let inv4z = 0.5 / four_zsq.sqrt();
                Self::from_xyzw(
                    (m02 + m20) * inv4z,
                    (m12 + m21) * inv4z,
                    four_zsq * inv4z,
                    (m01 - m10) * inv4z,
                )
            } else {
                // w^2 >= z^2
                let four_wsq = opm22 + sum10;
                let inv4w = 0.5 / four_wsq.sqrt();
                Self::from_xyzw(
                    (m12 - m21) * inv4w,
                    (m20 - m02) * inv4w,
                    (m01 - m10) * inv4w,
                    four_wsq * inv4w,
                )
            }
        }
    }

    /// Creates a quaternion from a 3x3 rotation matrix.
    #[inline]
    pub fn from_mat3(mat: &Mat3) -> Self {
        Self::from_rotation_axes(mat.x_axis, mat.y_axis, mat.z_axis)
    }

    /// Creates a quaternion from a 3x3 SIMD aligned rotation matrix.
    #[inline]
    pub fn from_mat3a(mat: &Mat3A) -> Self {
        Self::from_rotation_axes(mat.x_axis.into(), mat.y_axis.into(), mat.z_axis.into())
    }

    /// Creates a quaternion from a 3x3 rotation matrix inside a homogeneous 4x4 matrix.
    #[inline]
    pub fn from_mat4(mat: &Mat4) -> Self {
        Self::from_rotation_axes(
            mat.x_axis.truncate(),
            mat.y_axis.truncate(),
            mat.z_axis.truncate(),
        )
    }

    /// Gets the minimal rotation for transforming `from` to `to`.  The rotation is in the
    /// plane spanned by the two vectors.  Will rotate at most 180 degrees.
    ///
    /// The input vectors must be normalized (unit-length).
    ///
    /// `from_rotation_arc(from, to) * from ≈ to`.
    ///
    /// For near-singular cases (from≈to and from≈-to) the current implementation
    /// is only accurate to about 0.001 (for `f32`).
    ///
    /// # Panics
    ///
    /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
    pub fn from_rotation_arc(from: Vec3, to: Vec3) -> Self {
        glam_assert!(from.is_normalized());
        glam_assert!(to.is_normalized());

        const ONE_MINUS_EPS: f32 = 1.0 - 2.0 * core::f32::EPSILON;
        let dot = from.dot(to);
        if dot > ONE_MINUS_EPS {
            // 0° singulary: from ≈ to
            Self::IDENTITY
        } else if dot < -ONE_MINUS_EPS {
            // 180° singulary: from ≈ -to
            use core::f32::consts::PI; // half a turn = 𝛕/2 = 180°
            Self::from_axis_angle(from.any_orthonormal_vector(), PI)
        } else {
            let c = from.cross(to);
            Self::from_xyzw(c.x, c.y, c.z, 1.0 + dot).normalize()
        }
    }

    /// Gets the minimal rotation for transforming `from` to either `to` or `-to`.  This means
    /// that the resulting quaternion will rotate `from` so that it is colinear with `to`.
    ///
    /// The rotation is in the plane spanned by the two vectors.  Will rotate at most 90
    /// degrees.
    ///
    /// The input vectors must be normalized (unit-length).
    ///
    /// `to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1`.
    ///
    /// # Panics
    ///
    /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
    #[inline]
    pub fn from_rotation_arc_colinear(from: Vec3, to: Vec3) -> Self {
        if from.dot(to) < 0.0 {
            Self::from_rotation_arc(from, -to)
        } else {
            Self::from_rotation_arc(from, to)
        }
    }

    /// Gets the minimal rotation for transforming `from` to `to`.  The resulting rotation is
    /// around the z axis. Will rotate at most 180 degrees.
    ///
    /// The input vectors must be normalized (unit-length).
    ///
    /// `from_rotation_arc_2d(from, to) * from ≈ to`.
    ///
    /// For near-singular cases (from≈to and from≈-to) the current implementation
    /// is only accurate to about 0.001 (for `f32`).
    ///
    /// # Panics
    ///
    /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
    pub fn from_rotation_arc_2d(from: Vec2, to: Vec2) -> Self {
        glam_assert!(from.is_normalized());
        glam_assert!(to.is_normalized());

        const ONE_MINUS_EPSILON: f32 = 1.0 - 2.0 * core::f32::EPSILON;
        let dot = from.dot(to);
        if dot > ONE_MINUS_EPSILON {
            // 0° singulary: from ≈ to
            Self::IDENTITY
        } else if dot < -ONE_MINUS_EPSILON {
            // 180° singulary: from ≈ -to
            const COS_FRAC_PI_2: f32 = 0.0;
            const SIN_FRAC_PI_2: f32 = 1.0;
            // rotation around z by PI radians
            Self::from_xyzw(0.0, 0.0, SIN_FRAC_PI_2, COS_FRAC_PI_2)
        } else {
            // vector3 cross where z=0
            let z = from.x * to.y - to.x * from.y;
            let w = 1.0 + dot;
            // calculate length with x=0 and y=0 to normalize
            let len_rcp = 1.0 / (z * z + w * w).sqrt();
            Self::from_xyzw(0.0, 0.0, z * len_rcp, w * len_rcp)
        }
    }

    /// Returns the rotation axis and angle (in radians) of `self`.
    #[inline]
    pub fn to_axis_angle(self) -> (Vec3, f32) {
        const EPSILON: f32 = 1.0e-8;
        const EPSILON_SQUARED: f32 = EPSILON * EPSILON;
        let w = self.w;
        let angle = w.acos_approx() * 2.0;
        let scale_sq = f32::max(1.0 - w * w, 0.0);
        if scale_sq >= EPSILON_SQUARED {
            (
                Vec3::new(self.x, self.y, self.z) * scale_sq.sqrt().recip(),
                angle,
            )
        } else {
            (Vec3::X, angle)
        }
    }

    /// Returns the rotation axis scaled by the rotation in radians.
    #[inline]
    pub fn to_scaled_axis(self) -> Vec3 {
        let (axis, angle) = self.to_axis_angle();
        axis * angle
    }

    /// Returns the rotation angles for the given euler rotation sequence.
    #[inline]
    pub fn to_euler(self, euler: EulerRot) -> (f32, f32, f32) {
        euler.convert_quat(self)
    }

    /// `[x, y, z, w]`
    #[inline]
    pub fn to_array(&self) -> [f32; 4] {
        [self.x, self.y, self.z, self.w]
    }

    /// Returns the vector part of the quaternion.
    #[inline]
    pub fn xyz(self) -> Vec3 {
        Vec3::new(self.x, self.y, self.z)
    }

    /// Returns the quaternion conjugate of `self`. For a unit quaternion the
    /// conjugate is also the inverse.
    #[must_use]
    #[inline]
    pub fn conjugate(self) -> Self {
        const SIGN: __m128 = m128_from_f32x4([-0.0, -0.0, -0.0, 0.0]);
        Self(unsafe { _mm_xor_ps(self.0, SIGN) })
    }

    /// Returns the inverse of a normalized quaternion.
    ///
    /// Typically quaternion inverse returns the conjugate of a normalized quaternion.
    /// Because `self` is assumed to already be unit length this method *does not* normalize
    /// before returning the conjugate.
    ///
    /// # Panics
    ///
    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn inverse(self) -> Self {
        glam_assert!(self.is_normalized());
        self.conjugate()
    }

    /// Computes the dot product of `self` and `rhs`. The dot product is
    /// equal to the cosine of the angle between two quaternion rotations.
    #[inline]
    pub fn dot(self, rhs: Self) -> f32 {
        Vec4::from(self).dot(Vec4::from(rhs))
    }

    /// Computes the length of `self`.
    #[doc(alias = "magnitude")]
    #[inline]
    pub fn length(self) -> f32 {
        Vec4::from(self).length()
    }

    /// Computes the squared length of `self`.
    ///
    /// This is generally faster than `length()` as it avoids a square
    /// root operation.
    #[doc(alias = "magnitude2")]
    #[inline]
    pub fn length_squared(self) -> f32 {
        Vec4::from(self).length_squared()
    }

    /// Computes `1.0 / length()`.
    ///
    /// For valid results, `self` must _not_ be of length zero.
    #[inline]
    pub fn length_recip(self) -> f32 {
        Vec4::from(self).length_recip()
    }

    /// Returns `self` normalized to length 1.0.
    ///
    /// For valid results, `self` must _not_ be of length zero.
    ///
    /// Panics
    ///
    /// Will panic if `self` is zero length when `glam_assert` is enabled.
    #[must_use]
    #[inline]
    pub fn normalize(self) -> Self {
        Self::from_vec4(Vec4::from(self).normalize())
    }

    /// Returns `true` if, and only if, all elements are finite.
    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
    #[inline]
    pub fn is_finite(self) -> bool {
        Vec4::from(self).is_finite()
    }

    #[inline]
    pub fn is_nan(self) -> bool {
        Vec4::from(self).is_nan()
    }

    /// Returns whether `self` of length `1.0` or not.
    ///
    /// Uses a precision threshold of `1e-6`.
    #[inline]
    pub fn is_normalized(self) -> bool {
        Vec4::from(self).is_normalized()
    }

    #[inline]
    pub fn is_near_identity(self) -> bool {
        // Based on https://github.com/nfrechette/rtm `rtm::quat_near_identity`
        let threshold_angle = 0.002_847_144_6;
        // Because of floating point precision, we cannot represent very small rotations.
        // The closest f32 to 1.0 that is not 1.0 itself yields:
        // 0.99999994.acos() * 2.0  = 0.000690533954 rad
        //
        // An error threshold of 1.e-6 is used by default.
        // (1.0 - 1.e-6).acos() * 2.0 = 0.00284714461 rad
        // (1.0 - 1.e-7).acos() * 2.0 = 0.00097656250 rad
        //
        // We don't really care about the angle value itself, only if it's close to 0.
        // This will happen whenever quat.w is close to 1.0.
        // If the quat.w is close to -1.0, the angle will be near 2*PI which is close to
        // a negative 0 rotation. By forcing quat.w to be positive, we'll end up with
        // the shortest path.
        let positive_w_angle = self.w.abs().acos_approx() * 2.0;
        positive_w_angle < threshold_angle
    }

    /// Returns the angle (in radians) for the minimal rotation
    /// for transforming this quaternion into another.
    ///
    /// Both quaternions must be normalized.
    ///
    /// # Panics
    ///
    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
    #[inline]
    pub fn angle_between(self, rhs: Self) -> f32 {
        glam_assert!(self.is_normalized() && rhs.is_normalized());
        self.dot(rhs).abs().acos_approx() * 2.0
    }

    /// Returns true if the absolute difference of all elements between `self` and `rhs`
    /// is less than or equal to `max_abs_diff`.
    ///
    /// This can be used to compare if two quaternions contain similar elements. It works
    /// best when comparing with a known value. The `max_abs_diff` that should be used used
    /// depends on the values being compared against.
    ///
    /// For more see
    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
    #[inline]
    pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
        Vec4::from(self).abs_diff_eq(Vec4::from(rhs), max_abs_diff)
    }

    /// Performs a linear interpolation between `self` and `rhs` based on
    /// the value `s`.
    ///
    /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
    /// is `1.0`, the result will be equal to `rhs`.
    ///
    /// # Panics
    ///
    /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
    #[inline]
    #[doc(alias = "mix")]
    pub fn lerp(self, end: Self, s: f32) -> Self {
        glam_assert!(self.is_normalized());
        glam_assert!(end.is_normalized());

        const NEG_ZERO: __m128 = m128_from_f32x4([-0.0; 4]);
        let start = self.0;
        let end = end.0;
        unsafe {
            let dot = dot4_into_m128(start, end);
            // Calculate the bias, if the dot product is positive or zero, there is no bias
            // but if it is negative, we want to flip the 'end' rotation XYZW components
            let bias = _mm_and_ps(dot, NEG_ZERO);
            let interpolated = _mm_add_ps(
                _mm_mul_ps(_mm_sub_ps(_mm_xor_ps(end, bias), start), _mm_set_ps1(s)),
                start,
            );
            Quat(interpolated).normalize()
        }
    }

    /// Performs a spherical linear interpolation between `self` and `end`
    /// based on the value `s`.
    ///
    /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
    /// is `1.0`, the result will be equal to `end`.
    ///
    /// # Panics
    ///
    /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
    #[inline]
    pub fn slerp(self, mut end: Self, s: f32) -> Self {
        // http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/
        glam_assert!(self.is_normalized());
        glam_assert!(end.is_normalized());

        const DOT_THRESHOLD: f32 = 0.9995;

        // Note that a rotation can be represented by two quaternions: `q` and
        // `-q`. The slerp path between `q` and `end` will be different from the
        // path between `-q` and `end`. One path will take the long way around and
        // one will take the short way. In order to correct for this, the `dot`
        // product between `self` and `end` should be positive. If the `dot`
        // product is negative, slerp between `self` and `-end`.
        let mut dot = self.dot(end);
        if dot < 0.0 {
            end = -end;
            dot = -dot;
        }

        if dot > DOT_THRESHOLD {
            // assumes lerp returns a normalized quaternion
            self.lerp(end, s)
        } else {
            let theta = dot.acos_approx();

            let x = 1.0 - s;
            let y = s;
            let z = 1.0;

            unsafe {
                let tmp = _mm_mul_ps(_mm_set_ps1(theta), _mm_set_ps(0.0, z, y, x));
                let tmp = m128_sin(tmp);

                let scale1 = _mm_shuffle_ps(tmp, tmp, 0b00_00_00_00);
                let scale2 = _mm_shuffle_ps(tmp, tmp, 0b01_01_01_01);
                let theta_sin = _mm_shuffle_ps(tmp, tmp, 0b10_10_10_10);

                Self(_mm_div_ps(
                    _mm_add_ps(_mm_mul_ps(self.0, scale1), _mm_mul_ps(end.0, scale2)),
                    theta_sin,
                ))
            }
        }
    }

    /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
    ///
    /// # Panics
    ///
    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
    #[inline]
    pub fn mul_vec3(self, rhs: Vec3) -> Vec3 {
        glam_assert!(self.is_normalized());

        self.mul_vec3a(rhs.into()).into()
    }

    /// Multiplies two quaternions. If they each represent a rotation, the result will
    /// represent the combined rotation.
    ///
    /// Note that due to floating point rounding the result may not be perfectly normalized.
    ///
    /// # Panics
    ///
    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
    #[inline]
    pub fn mul_quat(self, rhs: Self) -> Self {
        glam_assert!(self.is_normalized());
        glam_assert!(rhs.is_normalized());

        // Based on https://github.com/nfrechette/rtm `rtm::quat_mul`
        const CONTROL_WZYX: __m128 = m128_from_f32x4([1.0, -1.0, 1.0, -1.0]);
        const CONTROL_ZWXY: __m128 = m128_from_f32x4([1.0, 1.0, -1.0, -1.0]);
        const CONTROL_YXWZ: __m128 = m128_from_f32x4([-1.0, 1.0, 1.0, -1.0]);

        let lhs = self.0;
        let rhs = rhs.0;

        unsafe {
            let r_xxxx = _mm_shuffle_ps(lhs, lhs, 0b00_00_00_00);
            let r_yyyy = _mm_shuffle_ps(lhs, lhs, 0b01_01_01_01);
            let r_zzzz = _mm_shuffle_ps(lhs, lhs, 0b10_10_10_10);
            let r_wwww = _mm_shuffle_ps(lhs, lhs, 0b11_11_11_11);

            let lxrw_lyrw_lzrw_lwrw = _mm_mul_ps(r_wwww, rhs);
            let l_wzyx = _mm_shuffle_ps(rhs, rhs, 0b00_01_10_11);

            let lwrx_lzrx_lyrx_lxrx = _mm_mul_ps(r_xxxx, l_wzyx);
            let l_zwxy = _mm_shuffle_ps(l_wzyx, l_wzyx, 0b10_11_00_01);

            let lwrx_nlzrx_lyrx_nlxrx = _mm_mul_ps(lwrx_lzrx_lyrx_lxrx, CONTROL_WZYX);

            let lzry_lwry_lxry_lyry = _mm_mul_ps(r_yyyy, l_zwxy);
            let l_yxwz = _mm_shuffle_ps(l_zwxy, l_zwxy, 0b00_01_10_11);

            let lzry_lwry_nlxry_nlyry = _mm_mul_ps(lzry_lwry_lxry_lyry, CONTROL_ZWXY);

            let lyrz_lxrz_lwrz_lzrz = _mm_mul_ps(r_zzzz, l_yxwz);
            let result0 = _mm_add_ps(lxrw_lyrw_lzrw_lwrw, lwrx_nlzrx_lyrx_nlxrx);

            let nlyrz_lxrz_lwrz_wlzrz = _mm_mul_ps(lyrz_lxrz_lwrz_lzrz, CONTROL_YXWZ);
            let result1 = _mm_add_ps(lzry_lwry_nlxry_nlyry, nlyrz_lxrz_lwrz_wlzrz);

            Self(_mm_add_ps(result0, result1))
        }
    }

    /// Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.
    #[inline]
    pub fn from_affine3(a: &crate::Affine3A) -> Self {
        #[allow(clippy::useless_conversion)]
        Self::from_rotation_axes(
            a.matrix3.x_axis.into(),
            a.matrix3.y_axis.into(),
            a.matrix3.z_axis.into(),
        )
    }

    /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
    #[inline]
    pub fn mul_vec3a(self, rhs: Vec3A) -> Vec3A {
        unsafe {
            const TWO: __m128 = m128_from_f32x4([2.0; 4]);
            let w = _mm_shuffle_ps(self.0, self.0, 0b11_11_11_11);
            let b = self.0;
            let b2 = dot3_into_m128(b, b);
            Vec3A(_mm_add_ps(
                _mm_add_ps(
                    _mm_mul_ps(rhs.0, _mm_sub_ps(_mm_mul_ps(w, w), b2)),
                    _mm_mul_ps(b, _mm_mul_ps(dot3_into_m128(rhs.0, b), TWO)),
                ),
                _mm_mul_ps(Vec3A(b).cross(rhs).into(), _mm_mul_ps(w, TWO)),
            ))
        }
    }

    #[inline]
    pub fn as_f64(self) -> DQuat {
        DQuat::from_xyzw(self.x as f64, self.y as f64, self.z as f64, self.w as f64)
    }
}

#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for Quat {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_tuple(stringify!(Quat))
            .field(&self.x)
            .field(&self.y)
            .field(&self.z)
            .field(&self.w)
            .finish()
    }
}

#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for Quat {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
    }
}

impl Add<Quat> for Quat {
    type Output = Self;
    /// Adds two quaternions.
    ///
    /// The sum is not guaranteed to be normalized.
    ///
    /// Note that addition is not the same as combining the rotations represented by the
    /// two quaternions! That corresponds to multiplication.
    #[inline]
    fn add(self, rhs: Self) -> Self {
        Self::from_vec4(Vec4::from(self) + Vec4::from(rhs))
    }
}

impl Sub<Quat> for Quat {
    type Output = Self;
    /// Subtracts the `rhs` quaternion from `self`.
    ///
    /// The difference is not guaranteed to be normalized.
    #[inline]
    fn sub(self, rhs: Self) -> Self {
        Self::from_vec4(Vec4::from(self) - Vec4::from(rhs))
    }
}

impl Mul<f32> for Quat {
    type Output = Self;
    /// Multiplies a quaternion by a scalar value.
    ///
    /// The product is not guaranteed to be normalized.
    #[inline]
    fn mul(self, rhs: f32) -> Self {
        Self::from_vec4(Vec4::from(self) * rhs)
    }
}

impl Div<f32> for Quat {
    type Output = Self;
    /// Divides a quaternion by a scalar value.
    /// The quotient is not guaranteed to be normalized.
    #[inline]
    fn div(self, rhs: f32) -> Self {
        Self::from_vec4(Vec4::from(self) / rhs)
    }
}

impl Mul<Quat> for Quat {
    type Output = Self;
    /// Multiplies two quaternions. If they each represent a rotation, the result will
    /// represent the combined rotation.
    ///
    /// Note that due to floating point rounding the result may not be perfectly
    /// normalized.
    ///
    /// # Panics
    ///
    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
    #[inline]
    fn mul(self, rhs: Self) -> Self {
        self.mul_quat(rhs)
    }
}

impl MulAssign<Quat> for Quat {
    /// Multiplies two quaternions. If they each represent a rotation, the result will
    /// represent the combined rotation.
    ///
    /// Note that due to floating point rounding the result may not be perfectly
    /// normalized.
    ///
    /// # Panics
    ///
    /// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
    #[inline]
    fn mul_assign(&mut self, rhs: Self) {
        *self = self.mul_quat(rhs);
    }
}

impl Mul<Vec3> for Quat {
    type Output = Vec3;
    /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
    ///
    /// # Panics
    ///
    /// Will panic if `self` is not normalized when `glam_assert` is enabled.
    #[inline]
    fn mul(self, rhs: Vec3) -> Self::Output {
        self.mul_vec3(rhs)
    }
}

impl Neg for Quat {
    type Output = Self;
    #[inline]
    fn neg(self) -> Self {
        self * -1.0
    }
}

impl Default for Quat {
    #[inline]
    fn default() -> Self {
        Self::IDENTITY
    }
}

impl PartialEq for Quat {
    #[inline]
    fn eq(&self, rhs: &Self) -> bool {
        Vec4::from(*self).eq(&Vec4::from(*rhs))
    }
}

#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 4]> for Quat {
    #[inline]
    fn as_ref(&self) -> &[f32; 4] {
        unsafe { &*(self as *const Self as *const [f32; 4]) }
    }
}

impl Sum<Self> for Quat {
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        iter.fold(Self::ZERO, Self::add)
    }
}

impl<'a> Sum<&'a Self> for Quat {
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
    }
}

impl Product for Quat {
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        iter.fold(Self::IDENTITY, Self::mul)
    }
}

impl<'a> Product<&'a Self> for Quat {
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
    }
}

impl Mul<Vec3A> for Quat {
    type Output = Vec3A;
    #[inline]
    fn mul(self, rhs: Vec3A) -> Self::Output {
        self.mul_vec3a(rhs)
    }
}

impl From<Quat> for Vec4 {
    #[inline]
    fn from(q: Quat) -> Self {
        Self(q.0)
    }
}

impl From<Quat> for (f32, f32, f32, f32) {
    #[inline]
    fn from(q: Quat) -> Self {
        Vec4::from(q).into()
    }
}

impl From<Quat> for [f32; 4] {
    #[inline]
    fn from(q: Quat) -> Self {
        Vec4::from(q).into()
    }
}

impl From<Quat> for __m128 {
    #[inline]
    fn from(q: Quat) -> Self {
        q.0
    }
}

impl Deref for Quat {
    type Target = crate::deref::Vec4<f32>;
    #[inline]
    fn deref(&self) -> &Self::Target {
        unsafe { &*(self as *const Self).cast() }
    }
}

impl DerefMut for Quat {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *(self as *mut Self).cast() }
    }
}