1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
use crate::core::storage::Columns4;
use crate::{DMat3, DMat4, DQuat, DVec3, Mat3, Mat3A, Mat4, Quat, Vec3, Vec3A};
use core::ops::{Add, Deref, DerefMut, Mul, Sub};

#[cfg(not(feature = "std"))]
use num_traits::Float;

macro_rules! define_affine3_struct {
    ($affine3:ident, $matrix:ident, $column:ident) => {
        /// A 3D affine transform, which can represent translation, rotation, scaling and shear.
        ///
        /// The type is composed of a 3x3 matrix containing a linear transformation (e.g. scale,
        /// rotation, shear, reflection) and a 3D vector translation.
        #[derive(Copy, Clone)]
        pub struct $affine3 {
            pub matrix3: $matrix,
            pub translation: $column,
        }
    };
}

macro_rules! impl_affine3_methods {
    ($t:ty, $mat3:ident, $mat4:ident, $quat:ident, $vec3:ident, $affine3:ident, $matrix:ident, $column:ident) => {
        impl $affine3 {
            /// The degenerate zero transform.
            ///
            /// This transforms any finite vector and point to zero.
            /// The zero transform is non-invertible.
            pub const ZERO: Self = Self {
                matrix3: $matrix::ZERO,
                translation: $column::ZERO,
            };

            /// The identity transform.
            ///
            /// Multiplying a vector with this returns the same vector.
            pub const IDENTITY: Self = Self {
                matrix3: $matrix::IDENTITY,
                translation: $column::ZERO,
            };

            /// Creates an affine transform from four column vectors.
            #[inline(always)]
            pub fn from_cols(
                x_axis: $column,
                y_axis: $column,
                z_axis: $column,
                w_axis: $column,
            ) -> Self {
                Self {
                    matrix3: $matrix::from_cols(x_axis, y_axis, z_axis),
                    translation: w_axis,
                }
            }

            /// Creates an affine transform from a `[S; 12]` array stored in column major order.
            /// If your data is stored in row major you will need to `transpose` the returned
            /// matrix.
            #[inline(always)]
            pub fn from_cols_array(m: &[$t; 12]) -> Self {
                Self {
                    matrix3: $matrix::from_cols_slice(&m[0..9]),
                    translation: $column::from_slice(&m[9..12]),
                }
            }

            /// Creates a `[S; 12]` array storing data in column major order.
            /// If you require data in row major order `transpose` the matrix first.
            #[inline(always)]
            pub fn to_cols_array(&self) -> [$t; 12] {
                let x = &self.matrix3.x_axis;
                let y = &self.matrix3.y_axis;
                let z = &self.matrix3.z_axis;
                let w = &self.translation;
                [x.x, x.y, x.z, y.x, y.y, y.z, z.x, z.y, z.z, w.x, w.y, w.z]
            }

            /// Creates an affine transform from a `[[S; 3]; 4]` 2D array stored in column major order.
            /// If your data is in row major order you will need to `transpose` the returned
            /// matrix.
            #[inline(always)]
            pub fn from_cols_array_2d(m: &[[$t; 3]; 4]) -> Self {
                Self {
                    matrix3: $matrix::from_cols(m[0].into(), m[1].into(), m[2].into()),
                    translation: m[3].into(),
                }
            }

            /// Creates a `[[S; 3]; 4]` 2D array storing data in column major order.
            /// If you require data in row major order `transpose` the matrix first.
            #[inline(always)]
            pub fn to_cols_array_2d(&self) -> [[$t; 3]; 4] {
                [
                    self.matrix3.x_axis.into(),
                    self.matrix3.y_axis.into(),
                    self.matrix3.z_axis.into(),
                    self.translation.into(),
                ]
            }

            /// Creates an affine transform from the first 12 values in `slice`.
            ///
            /// # Panics
            ///
            /// Panics if `slice` is less than 12 elements long.
            #[inline(always)]
            pub fn from_cols_slice(slice: &[$t]) -> Self {
                Self {
                    matrix3: $matrix::from_cols_slice(&slice[0..9]),
                    translation: $column::from_slice(&slice[9..12]),
                }
            }

            /// Writes the columns of `self` to the first 12 elements in `slice`.
            ///
            /// # Panics
            ///
            /// Panics if `slice` is less than 12 elements long.
            #[inline(always)]
            pub fn write_cols_to_slice(self, slice: &mut [$t]) {
                self.matrix3.write_cols_to_slice(&mut slice[0..9]);
                self.translation.write_to_slice(&mut slice[9..12]);
            }

            /// Creates an affine transform that changes scale.
            /// Note that if any scale is zero the transform will be non-invertible.
            #[inline(always)]
            pub fn from_scale(scale: $vec3) -> Self {
                Self {
                    matrix3: $matrix::from_diagonal(scale),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transform from the given `rotation` quaternion.
            #[inline(always)]
            pub fn from_quat(rotation: $quat) -> Self {
                Self {
                    matrix3: $matrix::from_quat(rotation),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transform containing a 3D rotation around a normalized
            /// rotation `axis` of `angle` (in radians).
            #[inline(always)]
            pub fn from_axis_angle(axis: $vec3, angle: $t) -> Self {
                Self {
                    matrix3: $matrix::from_axis_angle(axis, angle),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transform containing a 3D rotation around the x axis of
            /// `angle` (in radians).
            #[inline(always)]
            pub fn from_rotation_x(angle: $t) -> Self {
                Self {
                    matrix3: $matrix::from_rotation_x(angle),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transform containing a 3D rotation around the y axis of
            /// `angle` (in radians).
            #[inline]
            pub fn from_rotation_y(angle: $t) -> Self {
                Self {
                    matrix3: $matrix::from_rotation_y(angle),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transform containing a 3D rotation around the z axis of
            /// `angle` (in radians).
            #[inline]
            pub fn from_rotation_z(angle: $t) -> Self {
                Self {
                    matrix3: $matrix::from_rotation_z(angle),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transformation from the given 3D `translation`.
            #[inline(always)]
            pub fn from_translation(translation: $vec3) -> Self {
                Self {
                    matrix3: $matrix::IDENTITY,
                    translation: translation.into(),
                }
            }

            /// Creates an affine transform from a 3x3 matrix (expressing scale, shear and
            /// rotation)
            #[inline(always)]
            pub fn from_mat3(mat3: $mat3) -> Self {
                Self {
                    matrix3: mat3.into(),
                    translation: $column::ZERO,
                }
            }

            /// Creates an affine transform from a 3x3 matrix (expressing scale, shear and rotation)
            /// and a translation vector.
            ///
            /// Equivalent to `Affine3::from_translation(translation) * Affine3::from_mat3(mat3)`
            #[inline(always)]
            pub fn from_mat3_translation(mat3: $mat3, translation: $vec3) -> Self {
                Self {
                    matrix3: mat3.into(),
                    translation: translation.into(),
                }
            }

            /// Creates an affine transform from the given 3D `scale`, `rotation` and
            /// `translation`.
            ///
            /// Equivalent to `Affine3::from_translation(translation) *
            /// Affine3::from_quat(rotation) * Affine3::from_scale(scale)`
            #[inline(always)]
            pub fn from_scale_rotation_translation(
                scale: $vec3,
                rotation: $quat,
                translation: $vec3,
            ) -> Self {
                let rotation = $matrix::from_quat(rotation);
                Self {
                    matrix3: $matrix::from_cols(
                        rotation.x_axis * scale.x,
                        rotation.y_axis * scale.y,
                        rotation.z_axis * scale.z,
                    ),
                    translation: translation.into(),
                }
            }

            /// Creates an affine transform from the given 3D `rotation` and `translation`.
            ///
            /// Equivalent to `Affine3::from_translation(translation) * Affine3::from_quat(rotation)`
            #[inline(always)]
            pub fn from_rotation_translation(rotation: $quat, translation: $vec3) -> Self {
                Self {
                    matrix3: $matrix::from_quat(rotation.into()),
                    translation: translation.into(),
                }
            }

            /// The given `Mat4` must be an affine transform,
            /// i.e. contain no perspective transform.
            #[inline]
            pub fn from_mat4(m: $mat4) -> Self {
                Self {
                    matrix3: $matrix::from_cols(m.x_axis.into(), m.y_axis.into(), m.z_axis.into()),
                    translation: m.w_axis.into(),
                }
            }

            /// Extracts `scale`, `rotation` and `translation` from `self`.
            ///
            /// The transform is expected to be non-degenerate and without shearing, or the output
            /// will be invalid.
            ///
            /// # Panics
            ///
            /// Will panic if the determinant `self.matrix3` is zero or if the resulting scale
            /// vector containts any zero elements when `glam_assert` is enabled.
            #[inline(always)]
            pub fn to_scale_rotation_translation(&self) -> ($vec3, $quat, $vec3) {
                // TODO: migrate to core module
                let det = self.matrix3.determinant();
                glam_assert!(det != 0.0);

                let scale = $vec3::new(
                    self.matrix3.x_axis.length() * det.signum(),
                    self.matrix3.y_axis.length(),
                    self.matrix3.z_axis.length(),
                );

                glam_assert!(scale.cmpne($vec3::ZERO).all());

                let inv_scale = scale.recip();

                let rotation = $quat::from_mat3(&$mat3::from_cols(
                    (self.matrix3.x_axis * inv_scale.x).into(),
                    (self.matrix3.y_axis * inv_scale.y).into(),
                    (self.matrix3.z_axis * inv_scale.z).into(),
                ));

                (scale, rotation, self.translation.into())
            }

            #[inline]
            fn look_to_lh(eye: $vec3, dir: $vec3, up: $vec3) -> Self {
                let f = dir.normalize();
                let s = up.cross(f).normalize();
                let u = f.cross(s);
                Self {
                    matrix3: $matrix::from_cols(
                        $vec3::new(s.x, u.x, f.x).into(),
                        $vec3::new(s.y, u.y, f.y).into(),
                        $vec3::new(s.z, u.z, f.z).into(),
                    ),
                    translation: $column::new(-s.dot(eye), -u.dot(eye), -f.dot(eye)),
                }
            }

            /// Creates a left-handed view transform using a camera position, an up direction, and
            /// a focal point.
            ///
            /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
            ///
            /// # Panics
            ///
            /// Will panic if `up` is not normalized when `glam_assert` is enabled.
            #[inline]
            pub fn look_at_lh(eye: $vec3, center: $vec3, up: $vec3) -> Self {
                glam_assert!(up.is_normalized());
                Self::look_to_lh(eye, center - eye, up)
            }

            /// Creates a right-handed view transform using a camera position, an up direction, and
            /// a focal point.
            ///
            /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
            ///
            /// # Panics
            ///
            /// Will panic if `up` is not normalized when `glam_assert` is enabled.
            #[inline]
            pub fn look_at_rh(eye: $vec3, center: $vec3, up: $vec3) -> Self {
                glam_assert!(up.is_normalized());
                Self::look_to_lh(eye, eye - center, up)
            }

            /// Transforms the given 3D points, applying shear, scale, rotation and translation.
            #[inline(always)]
            pub fn transform_point3(&self, other: $vec3) -> $vec3 {
                ((self.matrix3.x_axis * other.x)
                    + (self.matrix3.y_axis * other.y)
                    + (self.matrix3.z_axis * other.z)
                    + self.translation)
                    .into()
            }

            /// Transforms the given 3D vector, applying shear, scale and rotation (but NOT
            /// translation).
            ///
            /// To also apply translation, use [`Self::transform_point3`] instead.
            #[inline(always)]
            pub fn transform_vector3(&self, other: $vec3) -> $vec3 {
                ((self.matrix3.x_axis * other.x)
                    + (self.matrix3.y_axis * other.y)
                    + (self.matrix3.z_axis * other.z))
                    .into()
            }

            /// Returns `true` if, and only if, all elements are finite.
            ///
            /// If any element is either `NaN`, positive or negative infinity, this will return
            /// `false`.
            #[inline]
            pub fn is_finite(&self) -> bool {
                self.matrix3.is_finite() && self.translation.is_finite()
            }

            /// Returns `true` if any elements are `NaN`.
            #[inline]
            pub fn is_nan(&self) -> bool {
                self.matrix3.is_nan() || self.translation.is_nan()
            }

            /// Returns true if the absolute difference of all elements between `self` and `other`
            /// is less than or equal to `max_abs_diff`.
            ///
            /// This can be used to compare if two 3x4 matrices contain similar elements. It works
            /// best when comparing with a known value. The `max_abs_diff` that should be used used
            /// depends on the values being compared against.
            ///
            /// For more see
            /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
            #[inline]
            pub fn abs_diff_eq(&self, other: Self, max_abs_diff: $t) -> bool {
                self.matrix3.abs_diff_eq(other.matrix3, max_abs_diff)
                    && self
                        .translation
                        .abs_diff_eq(other.translation, max_abs_diff)
            }

            /// Return the inverse of this transform.
            ///
            /// Note that if the transform is not invertible the result will be invalid.
            #[must_use]
            #[inline]
            pub fn inverse(&self) -> Self {
                let matrix3 = self.matrix3.inverse();
                // transform negative translation by the 3x3 inverse:
                let translation = -(matrix3 * self.translation);

                Self {
                    matrix3,
                    translation,
                }
            }
        }
    };
}

macro_rules! impl_affine3_traits {
    ($t:ty, $mat3:ident, $mat4:ident, $vec3:ident, $vec4:ident, $affine3:ident, $matrix:ident, $column:ident, $deref:ident) => {
        impl Default for $affine3 {
            #[inline(always)]
            fn default() -> Self {
                Self::IDENTITY
            }
        }

        impl Deref for $affine3 {
            type Target = $deref;
            #[inline(always)]
            fn deref(&self) -> &Self::Target {
                unsafe { &*(self as *const Self as *const Self::Target) }
            }
        }

        impl DerefMut for $affine3 {
            #[inline(always)]
            fn deref_mut(&mut self) -> &mut Self::Target {
                unsafe { &mut *(self as *mut Self as *mut Self::Target) }
            }
        }

        impl PartialEq for $affine3 {
            #[inline]
            fn eq(&self, other: &Self) -> bool {
                self.matrix3.eq(&other.matrix3) && self.translation.eq(&other.translation)
            }
        }

        #[cfg(not(target_arch = "spirv"))]
        impl core::fmt::Debug for $affine3 {
            fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
                fmt.debug_struct(stringify!($affine3))
                    .field("matrix3", &self.matrix3)
                    .field("translation", &self.translation)
                    .finish()
            }
        }

        #[cfg(not(target_arch = "spirv"))]
        impl core::fmt::Display for $affine3 {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                write!(
                    f,
                    "[{}, {}, {}, {}]",
                    self.x_axis, self.y_axis, self.z_axis, self.w_axis
                )
            }
        }

        impl From<$affine3> for $mat4 {
            #[inline]
            fn from(m: $affine3) -> $mat4 {
                $mat4::from_cols(
                    m.matrix3.x_axis.extend(0.0),
                    m.matrix3.y_axis.extend(0.0),
                    m.matrix3.z_axis.extend(0.0),
                    m.translation.extend(1.0),
                )
            }
        }

        impl Mul for $affine3 {
            type Output = $affine3;

            #[inline(always)]
            fn mul(self, other: $affine3) -> Self::Output {
                Self {
                    matrix3: self.matrix3 * other.matrix3,
                    translation: self.matrix3 * other.translation + self.translation,
                }
            }
        }

        impl Mul<$affine3> for $t {
            type Output = $affine3;
            #[inline(always)]
            fn mul(self, other: $affine3) -> Self::Output {
                $affine3 {
                    matrix3: self * other.matrix3,
                    translation: self * other.translation,
                }
            }
        }

        impl Mul<$t> for $affine3 {
            type Output = Self;
            #[inline(always)]
            fn mul(self, other: $t) -> Self::Output {
                Self {
                    matrix3: self.matrix3 * other,
                    translation: self.translation * other,
                }
            }
        }

        impl Add<$affine3> for $affine3 {
            type Output = Self;
            #[inline(always)]
            fn add(self, other: Self) -> Self::Output {
                Self {
                    matrix3: self.matrix3 + other.matrix3,
                    translation: self.translation + other.translation,
                }
            }
        }

        impl Sub<$affine3> for $affine3 {
            type Output = Self;
            #[inline(always)]
            fn sub(self, other: Self) -> Self::Output {
                Self {
                    matrix3: self.matrix3 - other.matrix3,
                    translation: self.translation - other.translation,
                }
            }
        }

        impl Mul<$mat4> for $affine3 {
            type Output = $mat4;

            #[inline(always)]
            fn mul(self, rhs: $mat4) -> Self::Output {
                $mat4::from(self) * rhs
            }
        }

        impl Mul<$affine3> for $mat4 {
            type Output = $mat4;

            #[inline(always)]
            fn mul(self, rhs: $affine3) -> Self::Output {
                self * $mat4::from(rhs)
            }
        }

        impl<'a> core::iter::Product<&'a Self> for $affine3 {
            fn product<I>(iter: I) -> Self
            where
                I: Iterator<Item = &'a Self>,
            {
                iter.fold(Self::IDENTITY, |a, &b| a * b)
            }
        }
    };
}

type TransformF32 = Mat3A;
type TranslateF32 = Vec3A;
type DerefTargetF32 = Columns4<crate::Vec3A>;

define_affine3_struct!(Affine3A, TransformF32, TranslateF32);
impl_affine3_methods!(
    f32,
    Mat3,
    Mat4,
    Quat,
    Vec3,
    Affine3A,
    TransformF32,
    TranslateF32
);
impl_affine3_traits!(
    f32,
    Mat3,
    Mat4,
    Vec3,
    Vec4,
    Affine3A,
    TransformF32,
    TranslateF32,
    DerefTargetF32
);

impl Affine3A {
    /// Transforms the given `Vec3A`, applying shear, scale, rotation and translation.
    #[inline(always)]
    pub fn transform_point3a(&self, other: Vec3A) -> Vec3A {
        self.matrix3 * other + self.translation
    }

    /// Transforms the given `Vec3A`, applying shear, scale and rotation (but NOT
    /// translation).
    ///
    /// To also apply translation, use [`Self::transform_point3`] instead.
    #[inline(always)]
    pub fn transform_vector3a(&self, other: Vec3A) -> Vec3A {
        self.matrix3 * other
    }
}

type TransformF64 = DMat3;
type TranslateF64 = DVec3;
type DerefTargetF64 = Columns4<DVec3>;

define_affine3_struct!(DAffine3, TransformF64, TranslateF64);
impl_affine3_methods!(
    f64,
    DMat3,
    DMat4,
    DQuat,
    DVec3,
    DAffine3,
    TransformF64,
    TranslateF64
);
impl_affine3_traits!(
    f64,
    DMat3,
    DMat4,
    DVec3,
    DVec4,
    DAffine3,
    TransformF64,
    TranslateF64,
    DerefTargetF64
);

mod const_test_affine3a {
    const_assert_eq!(16, core::mem::align_of::<super::Affine3A>());
    const_assert_eq!(64, core::mem::size_of::<super::Affine3A>());
}

mod const_test_daffine3 {
    const_assert_eq!(
        core::mem::align_of::<f64>(),
        core::mem::align_of::<super::DAffine3>()
    );
    const_assert_eq!(96, core::mem::size_of::<super::DAffine3>());
}