1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use std::sync::atomic::{AtomicBool, AtomicIsize, AtomicUsize, Ordering};

use crate::parallel::{num_threads, Reduce};

/// A scope to start threads within.
pub type Scope<'scope, 'env> = std::thread::Scope<'scope, 'env>;

/// Runs `left` and `right` in parallel, returning their output when both are done.
pub fn join<O1: Send, O2: Send>(left: impl FnOnce() -> O1 + Send, right: impl FnOnce() -> O2 + Send) -> (O1, O2) {
    std::thread::scope(|s| {
        let left = std::thread::Builder::new()
            .name("gitoxide.join.left".into())
            .spawn_scoped(s, left)
            .expect("valid name");
        let right = std::thread::Builder::new()
            .name("gitoxide.join.right".into())
            .spawn_scoped(s, right)
            .expect("valid name");
        (left.join().unwrap(), right.join().unwrap())
    })
}

/// Runs `f` with a scope to be used for spawning threads that will not outlive the function call.
/// That way it's possible to handle threads without needing the 'static lifetime for data they interact with.
///
/// Note that the threads should not rely on actual parallelism as threading might be turned off entirely, hence should not
/// connect each other with channels as deadlock would occur in single-threaded mode.
pub fn threads<'env, F, R>(f: F) -> R
where
    F: for<'scope> FnOnce(&'scope std::thread::Scope<'scope, 'env>) -> R,
{
    std::thread::scope(f)
}

/// Create a builder for threads which allows them to be spawned into a scope and configured prior to spawning.
pub fn build_thread() -> std::thread::Builder {
    std::thread::Builder::new()
}

/// Read items from `input` and `consume` them in multiple threads,
/// whose output output is collected by a `reducer`. Its task is to
/// aggregate these outputs into the final result returned by this function with the benefit of not having to be thread-safe.
///
/// * if `thread_limit` is `Some`, the given amount of threads will be used. If `None`, all logical cores will be used.
/// * `new_thread_state(thread_number) -> State` produces thread-local state once per thread to be based to `consume`
/// * `consume(Item, &mut State) -> Output` produces an output given an input obtained by `input` along with mutable state initially
///   created by `new_thread_state(…)`.
/// * For `reducer`, see the [`Reduce`] trait
pub fn in_parallel<I, S, O, R>(
    input: impl Iterator<Item = I> + Send,
    thread_limit: Option<usize>,
    new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
    consume: impl FnMut(I, &mut S) -> O + Send + Clone,
    mut reducer: R,
) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
where
    R: Reduce<Input = O>,
    I: Send,
    O: Send,
{
    let num_threads = num_threads(thread_limit);
    std::thread::scope(move |s| {
        let receive_result = {
            let (send_input, receive_input) = crossbeam_channel::bounded::<I>(num_threads);
            let (send_result, receive_result) = crossbeam_channel::bounded::<O>(num_threads);
            for thread_id in 0..num_threads {
                std::thread::Builder::new()
                    .name(format!("gitoxide.in_parallel.produce.{thread_id}"))
                    .spawn_scoped(s, {
                        let send_result = send_result.clone();
                        let receive_input = receive_input.clone();
                        let new_thread_state = new_thread_state.clone();
                        let mut consume = consume.clone();
                        move || {
                            let mut state = new_thread_state(thread_id);
                            for item in receive_input {
                                if send_result.send(consume(item, &mut state)).is_err() {
                                    break;
                                }
                            }
                        }
                    })
                    .expect("valid name");
            }
            std::thread::Builder::new()
                .name("gitoxide.in_parallel.feed".into())
                .spawn_scoped(s, move || {
                    for item in input {
                        if send_input.send(item).is_err() {
                            break;
                        }
                    }
                })
                .expect("valid name");
            receive_result
        };

        for item in receive_result {
            drop(reducer.feed(item)?);
        }
        reducer.finalize()
    })
}

/// Read items from `input` and `consume` them in multiple threads,
/// whose output output is collected by a `reducer`. Its task is to
/// aggregate these outputs into the final result returned by this function with the benefit of not having to be thread-safe.
/// Caall `finalize` to finish the computation, once per thread, if there was no error sending results earlier.
///
/// * if `thread_limit` is `Some`, the given amount of threads will be used. If `None`, all logical cores will be used.
/// * `new_thread_state(thread_number) -> State` produces thread-local state once per thread to be based to `consume`
/// * `consume(Item, &mut State) -> Output` produces an output given an input obtained by `input` along with mutable state initially
///   created by `new_thread_state(…)`.
/// * `finalize(State) -> Output` is called to potentially process remaining work that was placed in `State`.
/// * For `reducer`, see the [`Reduce`] trait
pub fn in_parallel_with_finalize<I, S, O, R>(
    input: impl Iterator<Item = I> + Send,
    thread_limit: Option<usize>,
    new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
    consume: impl FnMut(I, &mut S) -> O + Send + Clone,
    finalize: impl FnOnce(S) -> O + Send + Clone,
    mut reducer: R,
) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
where
    R: Reduce<Input = O>,
    I: Send,
    O: Send,
{
    let num_threads = num_threads(thread_limit);
    std::thread::scope(move |s| {
        let receive_result = {
            let (send_input, receive_input) = crossbeam_channel::bounded::<I>(num_threads);
            let (send_result, receive_result) = crossbeam_channel::bounded::<O>(num_threads);
            for thread_id in 0..num_threads {
                std::thread::Builder::new()
                    .name(format!("gitoxide.in_parallel.produce.{thread_id}"))
                    .spawn_scoped(s, {
                        let send_result = send_result.clone();
                        let receive_input = receive_input.clone();
                        let new_thread_state = new_thread_state.clone();
                        let mut consume = consume.clone();
                        let finalize = finalize.clone();
                        move || {
                            let mut state = new_thread_state(thread_id);
                            let mut can_send = true;
                            for item in receive_input {
                                if send_result.send(consume(item, &mut state)).is_err() {
                                    can_send = false;
                                    break;
                                }
                            }
                            if can_send {
                                send_result.send(finalize(state)).ok();
                            }
                        }
                    })
                    .expect("valid name");
            }
            std::thread::Builder::new()
                .name("gitoxide.in_parallel.feed".into())
                .spawn_scoped(s, move || {
                    for item in input {
                        if send_input.send(item).is_err() {
                            break;
                        }
                    }
                })
                .expect("valid name");
            receive_result
        };

        for item in receive_result {
            drop(reducer.feed(item)?);
        }
        reducer.finalize()
    })
}

/// An experiment to have fine-grained per-item parallelization with built-in aggregation via thread state.
/// This is only good for operations where near-random access isn't detrimental, so it's not usually great
/// for file-io as it won't make use of sorted inputs well.
/// Note that `periodic` is not guaranteed to be called in case other threads come up first and finish too fast.
/// `consume(&mut item, &mut stat, &Scope, &threads_available, &should_interrupt)` is called for performing the actual computation.
/// Note that `threads_available` should be decremented to start a thread that can steal your own work (as stored in `item`),
/// which allows callees to implement their own work-stealing in case the work is distributed unevenly.
/// Work stealing should only start after having processed at least one item to give all threads naturally operating on the slice
/// some time to start. Starting threads while slice-workers are still starting up would lead to over-allocation of threads,
/// which is why the number of threads left may turn negative. Once threads are started and stopped, be sure to adjust
/// the thread-count accordingly.
// TODO: better docs
pub fn in_parallel_with_slice<I, S, R, E>(
    input: &mut [I],
    thread_limit: Option<usize>,
    new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
    consume: impl FnMut(&mut I, &mut S, &AtomicIsize, &AtomicBool) -> Result<(), E> + Send + Clone,
    mut periodic: impl FnMut() -> Option<std::time::Duration> + Send,
    state_to_rval: impl FnOnce(S) -> R + Send + Clone,
) -> Result<Vec<R>, E>
where
    I: Send,
    E: Send,
    R: Send,
{
    let num_threads = num_threads(thread_limit);
    let mut results = Vec::with_capacity(num_threads);
    let stop_everything = &AtomicBool::default();
    let index = &AtomicUsize::default();
    let threads_left = &AtomicIsize::new(num_threads as isize);

    std::thread::scope({
        move |s| {
            std::thread::Builder::new()
                .name("gitoxide.in_parallel_with_slice.watch-interrupts".into())
                .spawn_scoped(s, {
                    move || loop {
                        if stop_everything.load(Ordering::Relaxed) {
                            break;
                        }

                        match periodic() {
                            Some(duration) => std::thread::sleep(duration),
                            None => {
                                stop_everything.store(true, Ordering::Relaxed);
                                break;
                            }
                        }
                    }
                })
                .expect("valid name");

            let input_len = input.len();
            struct Input<I>(*mut [I])
            where
                I: Send;

            // SAFETY: I is Send + Sync, so is a *mut [I]
            #[allow(unsafe_code)]
            unsafe impl<I> Send for Input<I> where I: Send {}

            let threads: Vec<_> = (0..num_threads)
                .map(|thread_id| {
                    std::thread::Builder::new()
                        .name(format!("gitoxide.in_parallel_with_slice.produce.{thread_id}"))
                        .spawn_scoped(s, {
                            let new_thread_state = new_thread_state.clone();
                            let state_to_rval = state_to_rval.clone();
                            let mut consume = consume.clone();
                            let input = Input(input as *mut [I]);
                            move || {
                                let _ = &input;
                                threads_left.fetch_sub(1, Ordering::SeqCst);
                                let mut state = new_thread_state(thread_id);
                                let res = (|| {
                                    while let Ok(input_index) =
                                        index.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
                                            (x < input_len).then_some(x + 1)
                                        })
                                    {
                                        if stop_everything.load(Ordering::Relaxed) {
                                            break;
                                        }
                                        // SAFETY: our atomic counter for `input_index` is only ever incremented, yielding
                                        //         each item exactly once.
                                        let item = {
                                            #[allow(unsafe_code)]
                                            unsafe {
                                                &mut (&mut *input.0)[input_index]
                                            }
                                        };
                                        if let Err(err) = consume(item, &mut state, threads_left, stop_everything) {
                                            stop_everything.store(true, Ordering::Relaxed);
                                            return Err(err);
                                        }
                                    }
                                    Ok(state_to_rval(state))
                                })();
                                threads_left.fetch_add(1, Ordering::SeqCst);
                                res
                            }
                        })
                        .expect("valid name")
                })
                .collect();
            for thread in threads {
                match thread.join() {
                    Ok(res) => {
                        results.push(res?);
                    }
                    Err(err) => {
                        // a panic happened, stop the world gracefully (even though we panic later)
                        stop_everything.store(true, Ordering::Relaxed);
                        std::panic::resume_unwind(err);
                    }
                }
            }

            stop_everything.store(true, Ordering::Relaxed);
            Ok(results)
        }
    })
}