1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//! Types for compile-time endianity.

use byteorder;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Deref, Index, Range, RangeFrom, RangeTo};

/// A trait describing the endianity of some buffer.
///
/// All interesting methods are from the `byteorder` crate's `ByteOrder`
/// trait. All methods are static. You shouldn't instantiate concrete objects
/// that implement this trait, it is just used as compile-time phantom data.
pub trait Endianity
    : byteorder::ByteOrder + Debug + Clone + Copy + PartialEq + Eq {
}

/// Little endian byte order.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum LittleEndian {}

impl byteorder::ByteOrder for LittleEndian {
    fn read_u16(buf: &[u8]) -> u16 {
        byteorder::LittleEndian::read_u16(buf)
    }
    fn read_u32(buf: &[u8]) -> u32 {
        byteorder::LittleEndian::read_u32(buf)
    }
    fn read_u64(buf: &[u8]) -> u64 {
        byteorder::LittleEndian::read_u64(buf)
    }
    fn read_uint(buf: &[u8], nbytes: usize) -> u64 {
        byteorder::LittleEndian::read_uint(buf, nbytes)
    }
    fn write_u16(buf: &mut [u8], n: u16) {
        byteorder::LittleEndian::write_u16(buf, n)
    }
    fn write_u32(buf: &mut [u8], n: u32) {
        byteorder::LittleEndian::write_u32(buf, n)
    }
    fn write_u64(buf: &mut [u8], n: u64) {
        byteorder::LittleEndian::write_u64(buf, n)
    }
    fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) {
        byteorder::LittleEndian::write_uint(buf, n, nbytes)
    }
}

impl Endianity for LittleEndian {}

/// Big endian byte order.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BigEndian {}

impl byteorder::ByteOrder for BigEndian {
    fn read_u16(buf: &[u8]) -> u16 {
        byteorder::BigEndian::read_u16(buf)
    }
    fn read_u32(buf: &[u8]) -> u32 {
        byteorder::BigEndian::read_u32(buf)
    }
    fn read_u64(buf: &[u8]) -> u64 {
        byteorder::BigEndian::read_u64(buf)
    }
    fn read_uint(buf: &[u8], nbytes: usize) -> u64 {
        byteorder::BigEndian::read_uint(buf, nbytes)
    }
    fn write_u16(buf: &mut [u8], n: u16) {
        byteorder::BigEndian::write_u16(buf, n)
    }
    fn write_u32(buf: &mut [u8], n: u32) {
        byteorder::BigEndian::write_u32(buf, n)
    }
    fn write_u64(buf: &mut [u8], n: u64) {
        byteorder::BigEndian::write_u64(buf, n)
    }
    fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) {
        byteorder::BigEndian::write_uint(buf, n, nbytes)
    }
}

impl Endianity for BigEndian {}

/// The native endianity for the target platform.
#[cfg(target_endian = "little")]
pub type NativeEndian = LittleEndian;
#[cfg(target_endian = "big")]
pub type NativeEndian = BigEndian;

/// A `&[u8]` slice with compile-time endianity metadata.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct EndianBuf<'input, Endian>(pub &'input [u8], pub PhantomData<Endian>)
    where Endian: Endianity;

impl<'input, Endian> EndianBuf<'input, Endian>
    where Endian: Endianity
{
    /// Construct a new `EndianBuf` with the given buffer.
    pub fn new(buf: &'input [u8]) -> EndianBuf<'input, Endian> {
        EndianBuf(buf, PhantomData)
    }
}

/// # Range Methods
///
/// Unfortunately, `std::ops::Index` *must* return a reference, so we can't
/// implement `Index<Range<usize>>` to return a new `EndianBuf` the way we would
/// like to. Instead, we abandon fancy indexing operators and have these plain
/// old methods.
impl<'input, Endian> EndianBuf<'input, Endian>
    where Endian: Endianity
{
    /// Take the given `start..end` range of the underlying buffer and return a
    /// new `EndianBuf`.
    ///
    /// ```
    /// use gimli::{EndianBuf, LittleEndian};
    ///
    /// let buf = [0x01, 0x02, 0x03, 0x04];
    /// let endian_buf = EndianBuf::<LittleEndian>::new(&buf);
    /// assert_eq!(endian_buf.range(1..3),
    ///            EndianBuf::new(&buf[1..3]));
    /// ```
    pub fn range(&self, idx: Range<usize>) -> EndianBuf<'input, Endian> {
        EndianBuf(&self.0[idx], self.1)
    }

    /// Take the given `start..` range of the underlying buffer and return a new
    /// `EndianBuf`.
    ///
    /// ```
    /// use gimli::{EndianBuf, LittleEndian};
    ///
    /// let buf = [0x01, 0x02, 0x03, 0x04];
    /// let endian_buf = EndianBuf::<LittleEndian>::new(&buf);
    /// assert_eq!(endian_buf.range_from(2..),
    ///            EndianBuf::new(&buf[2..]));
    /// ```
    pub fn range_from(&self, idx: RangeFrom<usize>) -> EndianBuf<'input, Endian> {
        EndianBuf(&self.0[idx], self.1)
    }

    /// Take the given `..end` range of the underlying buffer and return a new
    /// `EndianBuf`.
    ///
    /// ```
    /// use gimli::{EndianBuf, LittleEndian};
    ///
    /// let buf = [0x01, 0x02, 0x03, 0x04];
    /// let endian_buf = EndianBuf::<LittleEndian>::new(&buf);
    /// assert_eq!(endian_buf.range_to(..3),
    ///            EndianBuf::new(&buf[..3]));
    /// ```
    pub fn range_to(&self, idx: RangeTo<usize>) -> EndianBuf<'input, Endian> {
        EndianBuf(&self.0[idx], self.1)
    }
}

impl<'input, Endian> Index<usize> for EndianBuf<'input, Endian>
    where Endian: Endianity
{
    type Output = u8;
    fn index(&self, idx: usize) -> &Self::Output {
        &self.0[idx]
    }
}

impl<'input, Endian> Index<RangeFrom<usize>> for EndianBuf<'input, Endian>
    where Endian: Endianity
{
    type Output = [u8];
    fn index(&self, idx: RangeFrom<usize>) -> &Self::Output {
        &self.0[idx]
    }
}

impl<'input, Endian> Deref for EndianBuf<'input, Endian>
    where Endian: Endianity
{
    type Target = [u8];
    fn deref(&self) -> &Self::Target {
        self.0
    }
}

impl<'input, Endian> Into<&'input [u8]> for EndianBuf<'input, Endian>
    where Endian: Endianity
{
    fn into(self) -> &'input [u8] {
        self.0
    }
}