1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2016-2018 Mateusz Sieczko and other GilRs Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std::error::Error;
use std::ops::{AddAssign, Mul};
use std::{fmt, u16};

use super::base_effect::{BaseEffect, BaseEffectType};
use super::time::{Repeat, Ticks};

use vec_map::VecMap;

/// Specifies how distance between effect source and listener attenuates effect.
///
/// They are based on
/// [OpenAL Specification](http://openal.org/documentation/openal-1.1-specification.pdf) (chapter
/// 3.4), but the best way to see how they differ is to run `ff_pos` example.
///
/// Make sure that all parameters are ≥ 0. Additionally `Linear` and `LinearClamped` models don't
/// like if `ref_distance == max_distance` while others would prefer `ref_distance > 0`.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum DistanceModel {
    /// Effect is not attenuated by distance.
    None,
    /// Linear distance model.
    Linear {
        ref_distance: f32,
        rolloff_factor: f32,
        max_distance: f32,
    },
    /// Linear distance clamped model.
    LinearClamped {
        ref_distance: f32,
        rolloff_factor: f32,
        max_distance: f32,
    },
    /// Inverse distance model.
    Inverse {
        ref_distance: f32,
        rolloff_factor: f32,
    },
    /// Inverse distance clamped model.
    InverseClamped {
        ref_distance: f32,
        rolloff_factor: f32,
        max_distance: f32,
    },
    /// Exponential distance model.
    Exponential {
        ref_distance: f32,
        rolloff_factor: f32,
    },
    /// Exponential distance clamped model.
    ExponentialClamped {
        ref_distance: f32,
        rolloff_factor: f32,
        max_distance: f32,
    },
}

impl DistanceModel {
    fn attenuation(self, mut distance: f32) -> f32 {
        // For now we will follow OpenAL[1] specification for distance models. See chapter 3.4 for
        // more details.
        //
        // [1]: http://openal.org/documentation/openal-1.1-specification.pdf
        match self {
            DistanceModel::Linear {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                distance = distance.min(max_distance);

                1.0 - rolloff_factor * (distance - ref_distance) / (max_distance - ref_distance)
            }
            DistanceModel::LinearClamped {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                distance = distance.max(ref_distance);
                distance = distance.min(max_distance);

                1.0 - rolloff_factor * (distance - ref_distance) / (max_distance - ref_distance)
            }
            DistanceModel::Inverse {
                ref_distance,
                rolloff_factor,
            } => ref_distance / (ref_distance + rolloff_factor * (distance - ref_distance)),
            DistanceModel::InverseClamped {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                distance = distance.max(ref_distance);
                distance = distance.min(max_distance);

                ref_distance / (ref_distance + rolloff_factor * (distance - ref_distance))
            }
            DistanceModel::Exponential {
                ref_distance,
                rolloff_factor,
            } => (distance / ref_distance).powf(-rolloff_factor),
            DistanceModel::ExponentialClamped {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                distance = distance.max(ref_distance);
                distance = distance.min(max_distance);

                (distance / ref_distance).powf(-rolloff_factor)
            }
            DistanceModel::None => 1.0,
        }
    }

    pub(crate) fn validate(self) -> Result<(), DistanceModelError> {
        let (ref_distance, rolloff_factor, max_distance) = match self {
            DistanceModel::Inverse {
                ref_distance,
                rolloff_factor,
            } => {
                if ref_distance <= 0.0 {
                    return Err(DistanceModelError::InvalidModelParameter);
                }

                (ref_distance, rolloff_factor, 0.0)
            }
            DistanceModel::InverseClamped {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                if ref_distance <= 0.0 {
                    return Err(DistanceModelError::InvalidModelParameter);
                }

                (ref_distance, rolloff_factor, max_distance)
            }
            DistanceModel::Linear {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                if ref_distance == max_distance {
                    return Err(DistanceModelError::InvalidModelParameter);
                }

                (ref_distance, rolloff_factor, max_distance)
            }
            DistanceModel::LinearClamped {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                if ref_distance == max_distance {
                    return Err(DistanceModelError::InvalidModelParameter);
                }

                (ref_distance, rolloff_factor, max_distance)
            }
            DistanceModel::Exponential {
                ref_distance,
                rolloff_factor,
            } => {
                if ref_distance <= 0.0 {
                    return Err(DistanceModelError::InvalidModelParameter);
                }

                (ref_distance, rolloff_factor, 0.0)
            }
            DistanceModel::ExponentialClamped {
                ref_distance,
                max_distance,
                rolloff_factor,
            } => {
                if ref_distance <= 0.0 {
                    return Err(DistanceModelError::InvalidModelParameter);
                }

                (ref_distance, rolloff_factor, max_distance)
            }
            DistanceModel::None => (0.0, 0.0, 0.0),
        };

        if ref_distance < 0.0 {
            Err(DistanceModelError::InvalidReferenceDistance)
        } else if rolloff_factor < 0.0 {
            Err(DistanceModelError::InvalidRolloffFactor)
        } else if max_distance < 0.0 {
            Err(DistanceModelError::InvalidMaxDistance)
        } else {
            Ok(())
        }
    }
}

impl Default for DistanceModel {
    fn default() -> Self {
        DistanceModel::None
    }
}

/// Error that can be returned when passing [`DistanceModel`](struct.DistanceModel.html) with
/// invalid value.
#[derive(Copy, Clone, Debug, PartialEq)]
#[non_exhaustive]
pub enum DistanceModelError {
    /// Reference distance is < 0.
    InvalidReferenceDistance,
    /// Rolloff factor is < 0.
    InvalidRolloffFactor,
    /// Max distance is < 0.
    InvalidMaxDistance,
    /// Possible divide by zero
    InvalidModelParameter,
}

impl Error for DistanceModelError {}

impl fmt::Display for DistanceModelError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = match self {
            DistanceModelError::InvalidReferenceDistance => "reference distance is < 0",
            DistanceModelError::InvalidRolloffFactor => "rolloff factor is < 0",
            DistanceModelError::InvalidMaxDistance => "max distance is < 0",
            DistanceModelError::InvalidModelParameter => "possible divide by zero",
        };

        f.write_str(s)
    }
}

#[derive(Copy, Clone, PartialEq, Debug)]
pub(super) enum EffectState {
    Playing { since: Ticks },
    Stopped,
}

#[derive(Clone, PartialEq, Debug)]
pub(crate) struct EffectSource {
    base_effects: Vec<BaseEffect>,
    // TODO: Use bitset
    pub(super) devices: VecMap<()>,
    pub(super) repeat: Repeat,
    pub(super) distance_model: DistanceModel,
    pub(super) position: [f32; 3],
    pub(super) gain: f32,
    pub(super) state: EffectState,
}

impl EffectSource {
    pub(super) fn new(
        base_effects: Vec<BaseEffect>,
        devices: VecMap<()>,
        repeat: Repeat,
        dist_model: DistanceModel,
        position: [f32; 3],
        gain: f32,
    ) -> Self {
        EffectSource {
            base_effects,
            devices,
            repeat,
            distance_model: dist_model,
            position,
            gain,
            state: EffectState::Stopped,
        }
    }

    pub(super) fn combine_base_effects(&mut self, ticks: Ticks, actor_pos: [f32; 3]) -> Magnitude {
        let ticks = match self.state {
            EffectState::Playing { since } => {
                debug_assert!(ticks >= since);
                ticks - since
            }
            EffectState::Stopped => return Magnitude::zero(),
        };

        match self.repeat {
            Repeat::For(max_dur) if ticks > max_dur => {
                self.state = EffectState::Stopped;
            }
            _ => (),
        }

        let attenuation = self
            .distance_model
            .attenuation(self.position.distance(actor_pos))
            * self.gain;
        if attenuation < 0.05 {
            return Magnitude::zero();
        }

        let mut final_magnitude = Magnitude::zero();
        for effect in &self.base_effects {
            match effect.magnitude_at(ticks) {
                BaseEffectType::Strong { magnitude } => {
                    final_magnitude.strong = final_magnitude.strong.saturating_add(magnitude)
                }
                BaseEffectType::Weak { magnitude } => {
                    final_magnitude.weak = final_magnitude.weak.saturating_add(magnitude)
                }
            };
        }
        final_magnitude * attenuation
    }
}

/// (strong, weak) pair.
#[derive(Copy, Clone, Debug)]
pub(super) struct Magnitude {
    pub strong: u16,
    pub weak: u16,
}

impl Magnitude {
    pub fn zero() -> Self {
        Magnitude { strong: 0, weak: 0 }
    }
}

impl Mul<f32> for Magnitude {
    type Output = Magnitude;

    fn mul(self, rhs: f32) -> Self::Output {
        debug_assert!(rhs >= 0.0);
        let strong = self.strong as f32 * rhs;
        let strong = if strong > u16::MAX as f32 {
            u16::MAX
        } else {
            strong as u16
        };
        let weak = self.weak as f32 * rhs;
        let weak = if weak > u16::MAX as f32 {
            u16::MAX
        } else {
            weak as u16
        };
        Magnitude { strong, weak }
    }
}

impl AddAssign for Magnitude {
    fn add_assign(&mut self, rhs: Magnitude) {
        self.strong = self.strong.saturating_add(rhs.strong);
        self.weak = self.weak.saturating_add(rhs.weak);
    }
}

trait SliceVecExt {
    type Base;

    fn distance(self, from: Self) -> Self::Base;
}

impl SliceVecExt for [f32; 3] {
    type Base = f32;

    fn distance(self, from: Self) -> f32 {
        ((from[0] - self[0]).powi(2) + (from[1] - self[1]).powi(2) + (from[2] - self[2]).powi(2))
            .sqrt()
    }
}