1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
use std::mem;
use std::u64;
use std::cmp::min;
use std::iter::Iterator;
pub mod vec_stream;
pub mod stream;
pub use stream::*;

pub enum IntStreamState {
    Initial {
        header_time: u64 // aligned to a two hour window
    },
    Following {
        value: u64,
        delta: i64,
    },
}

pub struct IntStream {
    state: IntStreamState
}

impl IntStream {
    pub fn new(header_time: u64) -> Self {
        IntStream {
            state: IntStreamState::Initial { header_time: header_time }
        }
    }

    pub fn push(&mut self, number: u64, writer: &mut Writer) {
        let delta = match self.state {
            IntStreamState::Initial { header_time } => {
                assert!(number >= header_time); // header time should be rounded down
                let delta = number - header_time;
                assert!(delta <= (1 << 14)); // enough to store more than four hours in seconds
                writer.write(delta, 14);

                delta as i64
            },
            IntStreamState::Following { value: prev_value, delta: prev_delta } => {
                let delta = (number - prev_value) as i64;
                let delta_of_deltas = delta - prev_delta;

                if delta_of_deltas == 0 {
                    writer.write(0, 1);
                } else if delta_of_deltas >= -63 && delta_of_deltas <= 64 {
                    writer.write(0b10, 2);
                    writer.write((delta_of_deltas + 63) as u64, 7);
                } else if delta_of_deltas >= -255 && delta_of_deltas <= 256 {
                    writer.write(0b110, 3);
                    writer.write((delta_of_deltas + 255) as u64, 9);
                } else if delta_of_deltas >= -2047 && delta_of_deltas <= 2048 {
                    writer.write(0b1110, 4);
                    writer.write((delta_of_deltas + 2047) as u64, 12);
                } else {
                    writer.write(0b1111, 4);
                    writer.write(delta_of_deltas as u64, 32);
                }

                delta
            }
        };

        self.state = IntStreamState::Following {
            value: number,
            delta: delta
        };
    }
}



pub struct IntStreamParser {
    state: IntStreamState,
}

impl IntStreamParser {
    pub fn new(header_time: u64) -> Self {
        IntStreamParser {
            state: IntStreamState::Initial { header_time: header_time }
        }
    }

    pub fn next(&mut self, reader: &mut Reader) -> Option<u64> {
        let values = match self.state {
            IntStreamState::Initial { header_time } => {
                reader.read(14).and_then(|delta| Some((header_time + delta, delta as i64)))
            }
            IntStreamState::Following { value, delta } => {
                match reader.read(1) {
                    Some(0) => Some((value.wrapping_add(delta as u64), delta)),
                    Some(1) => {
                        // unwrapping reads from now on, on the assumption that the stream is
                        // well-formed

                        let (num_bits, bias) = if reader.read(1).unwrap() == 0 { // 10
                            (7, 63)
                        } else if reader.read(1).unwrap() == 0 { // 110
                            (9, 255)
                        } else if reader.read(1).unwrap() == 0 { // 1110
                            (12, 2047)
                        } else { // 1111
                            (32, 0)
                        };

                        let delta_of_deltas = reader.read(num_bits).unwrap() as i64 - bias;

                        let new_delta = delta + delta_of_deltas;
                        let new_value = value.wrapping_add(new_delta as u64);
                        Some((new_value, new_delta))
                    }
                    None => None,
                    _ => panic!("Binary read should not be able to return anything but 0 or 1")
                }
            }
        };

        if let Some((value, delta)) = values {
            self.state = IntStreamState::Following { value: value, delta: delta };
            Some(value)
        } else {
            None
        }
    }
}

pub struct IntStreamIterator<R> where R: Reader {
    parser: IntStreamParser,
    reader: R,
}

impl<R> IntStreamIterator<R> where R: Reader {
    pub fn new(reader: R, header_time: u64) -> Self {
        IntStreamIterator {
            parser: IntStreamParser::new(header_time),
            reader: reader,
        }
    }
}

impl<R> Iterator for IntStreamIterator<R> where R: Reader {
    type Item = u64;

    fn next(&mut self) -> Option<u64> {
        self.parser.next(&mut self.reader)
    }
}


pub enum DoubleStreamState {
    Initial,
    Following {
        value: u64,
        xor: u64,
    }
}

pub enum DoubleStreamStateLeadTrail {
    Initial,
    Following {
        value: u64,
        leading_zeros: u8,
        meaningful_count: u8,
    }
}

/// A `DoubleStream` compresses `f64` numbers by looking at the XOR between
/// consecutive updates.
///
/// Per [XORORLEADING] it's unclear to me if the xor-value itself should be
/// stored and used or if the number of leading and meaningful bits (or
/// trailing bits) should be stored and used. This is an implementation of
/// the former and will lead to a shrinking window size as more leading or
/// trailing zeroes are available. See `DoubleStreamLeadTrail` for an
/// implementation of the latter.
pub struct DoubleStream {
    state: DoubleStreamState
}

/// A `DoubleStreamLeadTrail` compresses `f64` numbers by looking at the XOR
/// between consecutive updates.
///
/// This is similar to `DoubleStream` except it uses the number of leading
/// bits and meaningful bits to keep a non-shrinking window. The only time
/// The window changes is for explict changes.
pub struct DoubleStreamLeadTrail {
    state: DoubleStreamStateLeadTrail
}

pub fn as_bits(i: f64) -> u64 {
    unsafe { mem::transmute(i) }
}

impl DoubleStream {
    pub fn new() -> Self {
        DoubleStream {
            state: DoubleStreamState::Initial
        }
    }

    pub fn push(&mut self, number: f64, writer: &mut Writer) {
        let number_as_bits = as_bits(number);

        self.state = match self.state {
            DoubleStreamState::Initial => {
                writer.write(number_as_bits, 64);
                DoubleStreamState::Following { value: number_as_bits, xor: number_as_bits }
            },
            DoubleStreamState::Following { value: previous, xor: prev_xor } => {
                let xored = previous ^ number_as_bits;
                match xored {
                    0 => writer.write(0, 1),
                    _ => {
                        let lz = min(xored.leading_zeros() as u64, 31); // [LEADING31]
                        let tz = xored.trailing_zeros() as u64;
                        assert!(lz < 32); // otherwise can't be stored in 5 bits
                        // we must assume at least one meaningful bit!

                        // [CLARIFY] should be prev_xor or prev_value below?
                        let prev_lz = prev_xor.leading_zeros() as u64;
                        let prev_tz = if prev_lz == 64 { 0 } else { prev_xor.trailing_zeros() as u64 }; // [OPTIMALIZATION] don't need to always calculate this one

                        if lz >= prev_lz && tz >= prev_tz {
                            // fit into the previous window
                            let meaningful_bits = xored >> prev_tz;
                            let meaningful_bit_count = 64 - prev_tz - prev_lz;

                            writer.write(0b10, 2);
                            writer.write(meaningful_bits, meaningful_bit_count as u8);
                        } else {
                            // create a new window with leading and trailing zeros
                            let meaningful_bits = xored >> tz;

                            // if tz and lz are 0, meaningful bits is 64, which can't be stored in 6 bits, so we
                            // must assume at least one significant bit, which we safely can since the xored
                            // value is not 0
                            let meaningful_bit_count = 64 - tz - lz;

                            assert!(meaningful_bit_count <= 64);
                            writer.write(0b11, 2);
                            writer.write(lz, 5);
                            writer.write(meaningful_bit_count - 1, 6); // [MEANING64]
                            writer.write(meaningful_bits, meaningful_bit_count as u8);
                        }
                    }
                }
                DoubleStreamState::Following { value: number_as_bits, xor: xored }
            }
        };
    }
}

impl DoubleStreamLeadTrail {
    // TODO: This is in large part a verbatim copy of `impl DoubleStream` with
    // a few changes. Once a clear winner has been crowned one of the
    // implementations can be removed. If no such winner is found, some code
    // could probably be extracted.
    pub fn new() -> Self {
        DoubleStreamLeadTrail {
            state: DoubleStreamStateLeadTrail::Initial
        }
    }

    pub fn push(&mut self, number: f64, writer: &mut Writer) {
        let number_as_bits = as_bits(number);

        self.state = match self.state {
            DoubleStreamStateLeadTrail::Initial => {
                writer.write(number_as_bits, 64);
                DoubleStreamStateLeadTrail::Following {
                  value: number_as_bits,
                  leading_zeros: 64, // force window to be redefined
                  meaningful_count: 0
                }
            },
            DoubleStreamStateLeadTrail::Following { value: previous, leading_zeros: prev_lz, meaningful_count: prev_meaningful } => {
                let xored = previous ^ number_as_bits;
                match xored {
                    0 => {
                        writer.write(0, 1);

                        DoubleStreamStateLeadTrail::Following {
                            value: number_as_bits,
                            // Made a choice here to keep the current window. Seems like a good
                            leading_zeros: prev_lz,
                            meaningful_count: prev_meaningful
                        }
                    },
                    _ => {
                        let lz = min(xored.leading_zeros() as u8, 31); // [LEADING31]
                        let tz = xored.trailing_zeros() as u8;
                        assert!(lz < 32); // otherwise can't be stored in 5 bits
                        // we must assume at least one meaningful bit!

                        let prev_tz = 64 - prev_lz - prev_meaningful;

                        if lz >= prev_lz && tz >= prev_tz {
                            // fit into the previous window
                            let meaningful_bits = xored >> prev_tz;
                            let meaningful_bit_count = 64 - prev_tz - prev_lz;

                            writer.write(0b10, 2);
                            writer.write(meaningful_bits, meaningful_bit_count as u8);

                            // keep window size
                            DoubleStreamStateLeadTrail::Following {
                                value: number_as_bits,
                                leading_zeros: prev_lz,
                                meaningful_count: prev_meaningful
                            }
                        } else {
                            // create a new window with leading and trailing zeros
                            let meaningful_bits = xored >> tz;

                            // if tz and lz are 0, meaningful bits is 64, which can't be stored in 6 bits, so we
                            // must assume at least one significant bit, which we safely can since the xored
                            // value is not 0
                            let meaningful_bit_count = 64 - tz - lz;

                            assert!(meaningful_bit_count <= 64);
                            writer.write(0b11, 2);
                            writer.write(lz as u64, 5);
                            writer.write((meaningful_bit_count - 1) as u64, 6); // [MEANING64]
                            writer.write(meaningful_bits, meaningful_bit_count as u8);

                            DoubleStreamStateLeadTrail::Following {
                                value: number_as_bits,
                                leading_zeros: lz,
                                meaningful_count: 64 - tz
                            }
                        }
                    }
                }
            }
        };
    }
}

pub struct DoubleStreamParser {
    state: DoubleStreamState,
}

impl DoubleStreamParser {
    pub fn new() -> Self {
        DoubleStreamParser {
            state: DoubleStreamState::Initial
        }
    }

    fn next(&mut self, reader: &mut Reader) -> Option<f64> {
        let values = match self.state {
            DoubleStreamState::Initial => {
                reader.read(64).and_then(|x| Some((x, x)))
            }
            DoubleStreamState::Following { value, xor } => {
                match reader.read(1) {
                    Some(0) => Some((value, xor)),
                    Some(1) => {
                        // unwrapping reads from now on, on the assumption that the stream is
                        // well-formed
                        match reader.read(1).unwrap() {
                            0 => { // reuse window
                                let prev_lz = xor.leading_zeros() as u64;
                                let prev_tz = if prev_lz == 64 { 0 } else { xor.trailing_zeros() as u64 };
                                let meaningful_bit_count = 64 - prev_tz - prev_lz;

                                let new_xor = reader.read(meaningful_bit_count as u8).unwrap() << prev_tz;
                                let new_value = value ^ new_xor;
                                Some((new_value, new_xor))
                            },
                            1 => { // new window
                                let lz = reader.read(5).unwrap();
                                let meaningful_bit_count = reader.read(6).unwrap() + 1;
                                let tz = 64 - meaningful_bit_count - lz;

                                let new_xor = reader.read(meaningful_bit_count as u8).unwrap() << tz;
                                let new_value = value ^ new_xor;
                                Some((new_value, new_xor))
                            },
                            _ => panic!("Binary read should not be able to return anything but 0 or 1")
                        }
                    }
                    None => None,
                    _ => panic!("Binary read should not be able to return anything but 0 or 1")
                }
            }
        };

        if let Some((value, xor)) = values {
            self.state = DoubleStreamState::Following { value: value, xor: xor };
            Some(unsafe { mem::transmute(value) })
        } else {
            None
        }
    }
}

pub struct DoubleStreamIterator<R: Reader> {
    parser: DoubleStreamParser,
    reader: R,
}

impl<R> DoubleStreamIterator<R> where R: Reader{
    pub fn new(reader: R) -> Self {
        DoubleStreamIterator {
            parser: DoubleStreamParser::new(),
            reader: reader,
        }
    }
}

impl<R> Iterator for DoubleStreamIterator<R> where R: Reader {
    type Item = f64;

    fn next(&mut self) -> Option<f64> {
        self.parser.next(&mut self.reader)
    }
}

pub struct TimeAndValueStream {
    timestamps: IntStream,
    values: DoubleStream,
}

impl TimeAndValueStream {
    pub fn new(header_time: u64) -> Self {
        TimeAndValueStream {
            timestamps: IntStream::new(header_time),
            values: DoubleStream::new(),
        }
    }

    pub fn push(&mut self, timestamp: u64, number: f64, writer: &mut Writer) {
        self.timestamps.push(timestamp, writer);
        self.values.push(number, writer);
    }
}

pub struct TimeAndValueIterator<R: Reader> {
    timestamp_parser: IntStreamParser,
    value_parser: DoubleStreamParser,
    reader: R,
}

impl<R> TimeAndValueIterator<R> where R: Reader{
    pub fn new(reader: R, header_time: u64) -> Self {
        TimeAndValueIterator {
            timestamp_parser: IntStreamParser::new(header_time),
            value_parser: DoubleStreamParser::new(),
            reader: reader,
        }
    }
}

impl<R> Iterator for TimeAndValueIterator<R> where R: Reader {
    type Item = (u64, f64);

    fn next(&mut self) -> Option<(u64, f64)> {
        // unwrap second result with the assumption that the stream is welformed and we don't get
        // access partial access to it
        self.timestamp_parser.next(&mut self.reader)
            .and_then(|timestamp| Some((timestamp, self.value_parser.next(&mut self.reader).unwrap())))
    }
}


#[cfg(test)]
mod tests {
    use super::*;
    use std::mem;
    use std::u64;

    struct StringWriter {
        string: String
    }

    struct StringReader {
        string: String,
        position: usize,
    }

    impl StringWriter {
        fn new() -> Self {
            StringWriter {
                string: String::new()
            }
        }
    }

    impl StringReader {
        fn new(string: String) -> Self {
            StringReader {
                string: string,
                position: 0,
            }
        }
    }

    impl Writer for StringWriter {
        fn write(&mut self, bits: u64, count: u8) {
            let formatted = &format!("{:0width$b}", bits, width = count as usize);
            assert_eq!(formatted.len(), count as usize);
            self.string.push_str(formatted);
        }
    }

    impl Reader for StringReader {
        fn read(&mut self, count: u8) -> Option<u64> {
            let start_position = self.position;
            let end_position = start_position + count as usize;

            if end_position <= self.string.len() {
                self.position = end_position;

                let bits_as_string = &self.string[start_position..end_position];
                Some(u64::from_str_radix(bits_as_string, 2).unwrap())
            } else {
                None
            }
        }
    }

    #[test]
    fn all_zeros() {
        // using XOR == 0 rule (0)
        let mut w = StringWriter::new();
        let mut c = DoubleStream::new();
        c.push(0f64, &mut w); assert_eq!(w.string, "0000000000000000000000000000000000000000000000000000000000000000");
        c.push(0f64, &mut w); assert_eq!(w.string, "00000000000000000000000000000000000000000000000000000000000000000");
        c.push(0f64, &mut w); assert_eq!(w.string, "000000000000000000000000000000000000000000000000000000000000000000");
        c.push(0f64, &mut w); assert_eq!(w.string, "0000000000000000000000000000000000000000000000000000000000000000000");
        c.push(0f64, &mut w); assert_eq!(w.string, "00000000000000000000000000000000000000000000000000000000000000000000");

        let mut r = DoubleStreamIterator::new(StringReader::new(w.string));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn new_window() {
        // using "new window" rule (11)
        let mut w = StringWriter::new();
        let mut c = DoubleStream::new();
        c.push(0f64, &mut w); assert_eq!(w.string, "0000000000000000000000000000000000000000000000000000000000000000");
        // one: 0011111111110000000000000000000000000000000000000000000000000000
        // L = leading zeros, #M = number of meaningful bits, meanfbits = the meaningful bits themselves -->       11[ L ][#M-1][meanbits]
        c.push(1f64, &mut w); assert_eq!(w.string, "000000000000000000000000000000000000000000000000000000000000000011000100010011111111111");

        let mut r = DoubleStreamIterator::new(StringReader::new(w.string));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), Some(1f64));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn reuse_window() {
        // using "old window" rule (10)
        // eleven: 0100000000100110000000000000000000000000000000000000000000000000
        // ten:    0100000000100100000000000000000000000000000000000000000000000000
        // xor:    0000000000000010000000000000000000000000000000000000000000000000
        let mut w = StringWriter::new();
        let mut c = DoubleStream::new();
        c.push(11f64, &mut w); assert_eq!(w.string, "0100000000100110000000000000000000000000000000000000000000000000");
        //                               window start ^            ^ window end
        //                                            [previous wnd]   ----------------------------------------------->
        // L = leading zeros, #M = number of meaningful bits, meanfbits = the meaningful bits themselves -->         10[previous wnd]
        c.push(10f64, &mut w); assert_eq!(w.string, "01000000001001100000000000000000000000000000000000000000000000001000000000000001");

        let mut r = DoubleStreamIterator::new(StringReader::new(w.string));
        assert_eq!(r.next(), Some(11f64));
        assert_eq!(r.next(), Some(10f64));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn all_significant_bits () {
        // what happens if we need to create a new window using all the signficant bits
        let mut w = StringWriter::new();
        let mut c = DoubleStream::new();
        let all_significant = unsafe { mem::transmute::<u64, f64>(0b1000000000000000000000000000000000000000000000000000000000000001u64) }; // a valid number = -0.5e-323

        // should not crash -- reflecting a change I did not present in the paper (but probably
        // assumed?), namely to store signficant bits - 1 in the significant bit field
        c.push(11f64, &mut w);           // 0100000000100110000000000000000000000000000000000000000000000000
        c.push(all_significant, &mut w); // 1000000000000000000000000000000000000000000000000000000000000001

        let mut r = DoubleStreamIterator::new(StringReader::new(w.string));
        assert_eq!(r.next(), Some(11f64));
        assert_eq!(r.next(), Some(all_significant));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn many_leading_decimals () {
        // using new window rule (11)
        // what happens if we need to create a new window where there are more than 32 leading zeros
        let mut w = StringWriter::new();
        let mut c = DoubleStream::new();
        let last_significant = unsafe { mem::transmute::<u64, f64>(0b0000000000000000000000000000000000000000000000000000000000000001u64) }; // a valid number = 0.5e-323

        // should not crash -- reflecting a change I did not present in the paper (but probably
        // assumed?), namely to store signficant bits - 1 in the significant bit field
        c.push(0f64, &mut w);             // 0000000000000000000000000000000000000000000000000000000000000000
        c.push(last_significant, &mut w); // 0000000000000000000000000000000000000000000000000000000000000001
        // xor                       0000000000000000000000000000000000000000000000000000000000000001
        //                                                                                           11[ L ][#M-1][meanbits                       ]
        assert_eq!(w.string, "00000000000000000000000000000000000000000000000000000000000000001111111100000000000000000000000000000000000001");

        let mut r = DoubleStreamIterator::new(StringReader::new(w.string));
        assert_eq!(r.next(), Some(0f64));
        assert_eq!(r.next(), Some(last_significant));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn fuzzer () {
        // throw some random values at it and see if they decode correctly
        let mut w = StringWriter::new();
        let mut c = DoubleStream::new();
        let mut numbers = Vec::new();

        for i in 0..1_000 {
            let i = i as f64;
            c.push(i, &mut w);
            numbers.push(i);
        }

        let r = DoubleStreamIterator::new(StringReader::new(w.string));

        for (from_vector, from_stream) in numbers.iter().zip(r) {
            assert_eq!(*from_vector, from_stream);
        }
    }

    #[test]
    fn fuzzer_vec () {
        // throw some random values at it and see if they decode correctly
        let mut w = vec_stream::VecWriter::new();
        let mut c = DoubleStream::new();
        let mut numbers = Vec::new();

        for i in 0..1_000 {
            let i = i as f64;
            c.push(i, &mut w);
            numbers.push(i);
        }

        let r = DoubleStreamIterator::new(vec_stream::VecReader::new(&w.bit_vector, w.used_bits_last_elm));

        for (from_vector, from_stream) in numbers.iter().zip(r) {
            assert_eq!(*from_vector, from_stream);
        }
    }

    #[test]
    fn all_zeros_int() {
        let mut w = StringWriter::new();
        let mut c = IntStream::new(0);
        c.push(0, &mut w); assert_eq!(w.string, "00000000000000");
        c.push(0, &mut w); assert_eq!(w.string, "000000000000000");
        c.push(0, &mut w); assert_eq!(w.string, "0000000000000000");
        c.push(0, &mut w); assert_eq!(w.string, "00000000000000000");
        c.push(0, &mut w); assert_eq!(w.string, "000000000000000000");

        let mut r = IntStreamIterator::new(StringReader::new(w.string), 0);
        assert_eq!(r.next(), Some(0));
        assert_eq!(r.next(), Some(0));
        assert_eq!(r.next(), Some(0));
        assert_eq!(r.next(), Some(0));
        assert_eq!(r.next(), Some(0));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn int_less_than_64() {
        let mut w = StringWriter::new();
        let mut c = IntStream::new(0);
        c.push(1, &mut w); assert_eq!(w.string, "00000000000001");                       // delta 1
        c.push(2, &mut w); assert_eq!(w.string, "000000000000010");                      // delta 1, dod = 0
        c.push(3, &mut w); assert_eq!(w.string, "0000000000000100");                     // delta 1, dod = 0
        c.push(4, &mut w); assert_eq!(w.string, "00000000000001000");                    // delta 1, dod = 0
        c.push(4, &mut w); assert_eq!(w.string, "00000000000001000100111110");           // delta 0, dod = -1
        c.push(4, &mut w); assert_eq!(w.string, "000000000000010001001111100");          // delta 0, dod = 0
        c.push(6, &mut w); assert_eq!(w.string, "000000000000010001001111100101000001"); // delta 2, dod = 2

        let mut r = IntStreamIterator::new(StringReader::new(w.string), 0);
        assert_eq!(r.next(), Some(1));
        assert_eq!(r.next(), Some(2));
        assert_eq!(r.next(), Some(3));
        assert_eq!(r.next(), Some(4));
        assert_eq!(r.next(), Some(4));
        assert_eq!(r.next(), Some(4));
        assert_eq!(r.next(), Some(6));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn int_all_steps() {
        let mut w = StringWriter::new();
        let mut c = IntStream::new(0);
        c.push(    1, &mut w); assert_eq!(w.string, "00000000000001");                                                                          // delta     1
        c.push(   51, &mut w); assert_eq!(w.string, "00000000000001101110000");                                                                 // delta    50, dod = 49
        c.push(  251, &mut w); assert_eq!(w.string, "00000000000001101110000110110010101");                                                     // delta   200, dod = 150
        c.push( 1251, &mut w); assert_eq!(w.string, "000000000000011011100001101100101011110101100011111");                                     // delta  1000, dod = 800
        c.push(11251, &mut w); assert_eq!(w.string, "000000000000011011100001101100101011110101100011111111100000000000000000010001100101000"); // delta 10000, dod = 9000

        let mut r = IntStreamIterator::new(StringReader::new(w.string), 0);
        assert_eq!(r.next(), Some(    1));
        assert_eq!(r.next(), Some(   51));
        assert_eq!(r.next(), Some(  251));
        assert_eq!(r.next(), Some( 1251));
        assert_eq!(r.next(), Some(11251));
        assert_eq!(r.next(), None);
    }

    #[test]
    fn fuzzer_vec_int () {
        // throw some random values at it and see if they decode correctly
        let header_time = 0;
        let mut w = vec_stream::VecWriter::new();
        let mut c = IntStream::new(header_time);
        let mut numbers = Vec::new();

        for i in header_time..1_000 {
            c.push(i, &mut w);
            numbers.push(i);
        }

        let r = IntStreamIterator::new(vec_stream::VecReader::new(&w.bit_vector, w.used_bits_last_elm), header_time);

        for (from_vector, from_stream) in numbers.iter().zip(r) {
            assert_eq!(*from_vector, from_stream);
        }
    }

    #[test]
    fn time_and_value () {
        let header_time = 10000;
        let mut w = vec_stream::VecWriter::new();
        let mut c = TimeAndValueStream::new(header_time);

        let mut numbers = Vec::new();
        numbers.push((10005, 0.34f64));
        numbers.push((10065, 0.35f64));
        numbers.push((10124, 0.72f64));
        numbers.push((10247, 0.42f64));
        numbers.push((10365, 1.12f64));

        for &(timestamp, value) in numbers.iter() {
            c.push(timestamp, value, &mut w);
        }

        let r = TimeAndValueIterator::new(vec_stream::VecReader::new(&w.bit_vector, w.used_bits_last_elm), header_time);

        for (from_vector, from_stream) in numbers.iter().zip(r) {
            assert_eq!(*from_vector, from_stream);
        }
    }
}