1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
pub(crate) use nalgebra as na;
use std::f32;
use std::u32;

use crate::graphics::{FillOptions, StrokeOptions};

/// A 2 dimensional point representing a location
pub(crate) type Point2 = na::Point2<f32>;
/// A 2 dimensional vector representing an offset of a location
pub(crate) type Vector2 = na::Vector2<f32>;
/// A 4 dimensional matrix representing an arbitrary 3d transformation
pub(crate) type Matrix4 = na::Matrix4<f32>;

/// A simple 2D rectangle.
///
/// The origin of the rectangle is at the top-left,
/// with x increasing to the right and y increasing down.
#[derive(Copy, Clone, PartialEq, Debug, Default)]
pub struct Rect {
    /// X coordinate of the left edge of the rect.
    pub x: f32,
    /// Y coordinate of the top edge of the rect.
    pub y: f32,
    /// Total width of the rect
    pub w: f32,
    /// Total height of the rect.
    pub h: f32,
}

impl Rect {
    /// Create a new `Rect`.
    pub fn new(x: f32, y: f32, w: f32, h: f32) -> Self {
        Rect { x, y, w, h }
    }

    /// Creates a new `Rect` a la Love2D's `love.graphics.newQuad`,
    /// as a fraction of the reference rect's size.
    pub fn fraction(x: f32, y: f32, w: f32, h: f32, reference: &Rect) -> Rect {
        Rect {
            x: x / reference.w,
            y: y / reference.h,
            w: w / reference.w,
            h: h / reference.h,
        }
    }

    /// Create a new rect from `i32` coordinates.
    pub fn new_i32(x: i32, y: i32, w: i32, h: i32) -> Self {
        Rect {
            x: x as f32,
            y: y as f32,
            w: w as f32,
            h: h as f32,
        }
    }

    /// Create a new `Rect` with all values zero.
    pub fn zero() -> Self {
        Self::new(0.0, 0.0, 0.0, 0.0)
    }

    /// Creates a new `Rect` at `0,0` with width and height 1.
    pub fn one() -> Self {
        Self::new(0.0, 0.0, 1.0, 1.0)
    }

    /// Gets the `Rect`'s x and y coordinates as a `Point2`.
    pub fn point(&self) -> mint::Point2<f32> {
        mint::Point2 {
            x: self.x,
            y: self.y,
        }
    }

    /// Returns the left edge of the `Rect`
    pub fn left(&self) -> f32 {
        self.x
    }

    /// Returns the right edge of the `Rect`
    pub fn right(&self) -> f32 {
        self.x + self.w
    }

    /// Returns the top edge of the `Rect`
    pub fn top(&self) -> f32 {
        self.y
    }

    /// Returns the bottom edge of the `Rect`
    pub fn bottom(&self) -> f32 {
        self.y + self.h
    }

    /// Checks whether the `Rect` contains a `Point`
    pub fn contains<P>(&self, point: P) -> bool
    where
        P: Into<mint::Point2<f32>>,
    {
        let point = point.into();
        point.x >= self.left()
            && point.x <= self.right()
            && point.y <= self.bottom()
            && point.y >= self.top()
    }

    /// Checks whether the `Rect` overlaps another `Rect`
    pub fn overlaps(&self, other: &Rect) -> bool {
        self.left() <= other.right()
            && self.right() >= other.left()
            && self.top() <= other.bottom()
            && self.bottom() >= other.top()
    }

    /// Translates the `Rect` by an offset of (x, y)
    pub fn translate<V>(&mut self, offset: V)
    where
        V: Into<mint::Vector2<f32>>,
    {
        let offset = offset.into();
        self.x += offset.x;
        self.y += offset.y;
    }

    /// Moves the `Rect`'s origin to (x, y)
    pub fn move_to<P>(&mut self, destination: P)
    where
        P: Into<mint::Point2<f32>>,
    {
        let destination = destination.into();
        self.x = destination.x;
        self.y = destination.y;
    }

    /// Scales the `Rect` by a factor of (sx, sy),
    /// growing towards the bottom-left
    pub fn scale(&mut self, sx: f32, sy: f32) {
        self.w *= sx;
        self.h *= sy;
    }

    /// Calculated the new Rect around the rotated one.
    pub fn rotate(&mut self, rotation: f32) {
        let rotation = na::Rotation2::new(rotation);
        let x0 = self.x;
        let y0 = self.y;
        let x1 = self.right();
        let y1 = self.bottom();
        let points = [
            rotation * na::Point2::new(x0, y0),
            rotation * na::Point2::new(x0, y1),
            rotation * na::Point2::new(x1, y0),
            rotation * na::Point2::new(x1, y1),
        ];
        let p0 = points[0];
        let mut x_max = p0.x;
        let mut x_min = p0.x;
        let mut y_max = p0.y;
        let mut y_min = p0.y;
        for p in &points {
            x_max = f32::max(x_max, p.x);
            x_min = f32::min(x_min, p.x);
            y_max = f32::max(y_max, p.y);
            y_min = f32::min(y_min, p.y);
        }
        *self = Rect {
            w: x_max - x_min,
            h: y_max - y_min,
            x: x_min,
            y: y_min,
        }
    }

    /// Returns a new `Rect` that includes all points of these two `Rect`s.
    pub fn combine_with(self, other: Rect) -> Rect {
        let x = f32::min(self.x, other.x);
        let y = f32::min(self.y, other.y);
        let w = f32::max(self.right(), other.right()) - x;
        let h = f32::max(self.bottom(), other.bottom()) - y;
        Rect { x, y, w, h }
    }
}

impl approx::AbsDiffEq for Rect {
    type Epsilon = f32;

    fn default_epsilon() -> Self::Epsilon {
        f32::default_epsilon()
    }

    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        f32::abs_diff_eq(&self.x, &other.x, epsilon)
            && f32::abs_diff_eq(&self.y, &other.y, epsilon)
            && f32::abs_diff_eq(&self.w, &other.w, epsilon)
            && f32::abs_diff_eq(&self.h, &other.h, epsilon)
    }
}

impl approx::RelativeEq for Rect {
    fn default_max_relative() -> Self::Epsilon {
        f32::default_max_relative()
    }

    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        f32::relative_eq(&self.x, &other.x, epsilon, max_relative)
            && f32::relative_eq(&self.y, &other.y, epsilon, max_relative)
            && f32::relative_eq(&self.w, &other.w, epsilon, max_relative)
            && f32::relative_eq(&self.h, &other.h, epsilon, max_relative)
    }
}

impl From<[f32; 4]> for Rect {
    fn from(val: [f32; 4]) -> Self {
        Rect::new(val[0], val[1], val[2], val[3])
    }
}

impl From<Rect> for [f32; 4] {
    fn from(val: Rect) -> Self {
        [val.x, val.y, val.w, val.h]
    }
}

/// A RGBA color in the `sRGB` color space represented as `f32`'s in the range `[0.0-1.0]`
///
/// For convenience, [`WHITE`](constant.WHITE.html) and [`BLACK`](constant.BLACK.html) are provided.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct Color {
    /// Red component
    pub r: f32,
    /// Green component
    pub g: f32,
    /// Blue component
    pub b: f32,
    /// Alpha component
    pub a: f32,
}

/// White
pub const WHITE: Color = Color {
    r: 1.0,
    g: 1.0,
    b: 1.0,
    a: 1.0,
};

/// Black
pub const BLACK: Color = Color {
    r: 0.0,
    g: 0.0,
    b: 0.0,
    a: 1.0,
};

impl Color {
    /// Create a new `Color` from four `f32`'s in the range `[0.0-1.0]`
    pub fn new(r: f32, g: f32, b: f32, a: f32) -> Self {
        Color { r, g, b, a }
    }

    /// Create a new `Color` from four `u8`'s in the range `[0-255]`
    pub fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Color {
        Color::from((r, g, b, a))
    }

    /// Create a new `Color` from three u8's in the range `[0-255]`,
    /// with the alpha component fixed to 255 (opaque)
    pub fn from_rgb(r: u8, g: u8, b: u8) -> Color {
        Color::from((r, g, b))
    }

    /// Return a tuple of four `u8`'s in the range `[0-255]` with the `Color`'s
    /// components.
    pub fn to_rgba(self) -> (u8, u8, u8, u8) {
        self.into()
    }

    /// Return a tuple of three `u8`'s in the range `[0-255]` with the `Color`'s
    /// components.
    pub fn to_rgb(self) -> (u8, u8, u8) {
        self.into()
    }

    /// Convert a packed `u32` containing `0xRRGGBBAA` into a `Color`
    pub fn from_rgba_u32(c: u32) -> Color {
        let rp = ((c & 0xFF00_0000u32) >> 24) as u8;
        let gp = ((c & 0x00FF_0000u32) >> 16) as u8;
        let bp = ((c & 0x0000_FF00u32) >> 8) as u8;
        let ap = (c & 0x0000_00FFu32) as u8;
        Color::from((rp, gp, bp, ap))
    }

    /// Convert a packed `u32` containing `0x00RRGGBB` into a `Color`.
    /// This lets you do things like `Color::from_rgb_u32(0xCD09AA)` easily if you want.
    pub fn from_rgb_u32(c: u32) -> Color {
        let rp = ((c & 0x00FF_0000u32) >> 16) as u8;
        let gp = ((c & 0x0000_FF00u32) >> 8) as u8;
        let bp = (c & 0x0000_00FFu32) as u8;
        Color::from((rp, gp, bp))
    }

    /// Convert a `Color` into a packed `u32`, containing `0xRRGGBBAA` as bytes.
    pub fn to_rgba_u32(self) -> u32 {
        let (r, g, b, a): (u8, u8, u8, u8) = self.into();
        let rp = (u32::from(r)) << 24;
        let gp = (u32::from(g)) << 16;
        let bp = (u32::from(b)) << 8;
        let ap = u32::from(a);
        (rp | gp | bp | ap)
    }

    /// Convert a `Color` into a packed `u32`, containing `0x00RRGGBB` as bytes.
    pub fn to_rgb_u32(self) -> u32 {
        let (r, g, b, _a): (u8, u8, u8, u8) = self.into();
        let rp = (u32::from(r)) << 16;
        let gp = (u32::from(g)) << 8;
        let bp = u32::from(b);
        (rp | gp | bp)
    }
}

impl From<(u8, u8, u8, u8)> for Color {
    /// Convert a `(R, G, B, A)` tuple of `u8`'s in the range `[0-255]` into a `Color`
    fn from(val: (u8, u8, u8, u8)) -> Self {
        let (r, g, b, a) = val;
        let rf = (f32::from(r)) / 255.0;
        let gf = (f32::from(g)) / 255.0;
        let bf = (f32::from(b)) / 255.0;
        let af = (f32::from(a)) / 255.0;
        Color::new(rf, gf, bf, af)
    }
}

impl From<(u8, u8, u8)> for Color {
    /// Convert a `(R, G, B)` tuple of `u8`'s in the range `[0-255]` into a `Color`,
    /// with a value of 255 for the alpha element (i.e., no transparency.)
    fn from(val: (u8, u8, u8)) -> Self {
        let (r, g, b) = val;
        Color::from((r, g, b, 255))
    }
}

impl From<[f32; 4]> for Color {
    /// Turns an `[R, G, B, A] array of `f32`'s into a `Color` with no format changes.
    /// All inputs should be in the range `[0.0-1.0]`.
    fn from(val: [f32; 4]) -> Self {
        Color::new(val[0], val[1], val[2], val[3])
    }
}

impl From<(f32, f32, f32)> for Color {
    /// Convert a `(R, G, B)` tuple of `f32`'s in the range `[0.0-1.0]` into a `Color`,
    /// with a value of 1.0 to for the alpha element (ie, no transparency.)
    fn from(val: (f32, f32, f32)) -> Self {
        let (r, g, b) = val;
        Color::new(r, g, b, 1.0)
    }
}

impl From<(f32, f32, f32, f32)> for Color {
    /// Convert a `(R, G, B, A)` tuple of `f32`'s in the range `[0.0-1.0]` into a `Color`
    fn from(val: (f32, f32, f32, f32)) -> Self {
        let (r, g, b, a) = val;
        Color::new(r, g, b, a)
    }
}

impl From<Color> for (u8, u8, u8, u8) {
    /// Convert a `Color` into a `(R, G, B, A)` tuple of `u8`'s in the range of `[0-255]`.
    fn from(color: Color) -> Self {
        let r = (color.r * 255.0) as u8;
        let g = (color.g * 255.0) as u8;
        let b = (color.b * 255.0) as u8;
        let a = (color.a * 255.0) as u8;
        (r, g, b, a)
    }
}

impl From<Color> for (u8, u8, u8) {
    /// Convert a `Color` into a `(R, G, B)` tuple of `u8`'s in the range of `[0-255]`,
    /// ignoring the alpha term.
    fn from(color: Color) -> Self {
        let (r, g, b, _) = color.into();
        (r, g, b)
    }
}

impl From<Color> for [f32; 4] {
    /// Convert a `Color` into an `[R, G, B, A]` array of `f32`'s in the range of `[0.0-1.0]`.
    fn from(color: Color) -> Self {
        [color.r, color.g, color.b, color.a]
    }
}

/// A RGBA color in the *linear* color space,
/// suitable for shoving into a shader.
#[derive(Copy, Clone, PartialEq, Debug)]
pub(crate) struct LinearColor {
    /// Red component
    pub r: f32,
    /// Green component
    pub g: f32,
    /// Blue component
    pub b: f32,
    /// Alpha component
    pub a: f32,
}

impl From<Color> for LinearColor {
    /// Convert an (sRGB) Color into a linear color,
    /// per https://en.wikipedia.org/wiki/Srgb#The_reverse_transformation
    fn from(c: Color) -> Self {
        fn f(component: f32) -> f32 {
            let a = 0.055;
            if component <= 0.04045 {
                component / 12.92
            } else {
                ((component + a) / (1.0 + a)).powf(2.4)
            }
        }
        LinearColor {
            r: f(c.r),
            g: f(c.g),
            b: f(c.b),
            a: c.a,
        }
    }
}

impl From<LinearColor> for Color {
    fn from(c: LinearColor) -> Self {
        fn f(component: f32) -> f32 {
            let a = 0.055;
            if component <= 0.003_130_8 {
                component * 12.92
            } else {
                (1.0 + a) * component.powf(1.0 / 2.4)
            }
        }
        Color {
            r: f(c.r),
            g: f(c.g),
            b: f(c.b),
            a: c.a,
        }
    }
}

impl From<LinearColor> for [f32; 4] {
    fn from(color: LinearColor) -> Self {
        [color.r, color.g, color.b, color.a]
    }
}

/// Specifies whether a shape should be drawn
/// filled or as an outline.
#[derive(Debug, Copy, Clone)]
pub enum DrawMode {
    /// A stroked line with given parameters, see `StrokeOptions` documentation.
    Stroke(StrokeOptions),
    /// A filled shape with given parameters, see `FillOptions` documentation.
    Fill(FillOptions),
}

impl DrawMode {
    /// Constructs a DrawMode that draws a stroke with the given width
    pub fn stroke(width: f32) -> DrawMode {
        DrawMode::Stroke(StrokeOptions::default().with_line_width(width))
    }

    /// Constructs a DrawMode that fills shapes
    pub fn fill() -> DrawMode {
        DrawMode::Fill(FillOptions::default())
    }
}

/// Specifies what blending method to use when scaling up/down images.
#[derive(Debug, Copy, Clone)]
pub enum FilterMode {
    /// Use linear interpolation
    Linear,
    /// Use nearest-neighbor interpolation
    Nearest,
}

use gfx::texture::FilterMethod;

impl From<FilterMethod> for FilterMode {
    fn from(f: FilterMethod) -> Self {
        match f {
            FilterMethod::Scale => FilterMode::Nearest,
            _other => FilterMode::Linear,
        }
    }
}

impl From<FilterMode> for FilterMethod {
    fn from(f: FilterMode) -> Self {
        match f {
            FilterMode::Nearest => FilterMethod::Scale,
            FilterMode::Linear => FilterMethod::Bilinear,
        }
    }
}

/// Specifies how to wrap textures.
pub use gfx::texture::WrapMode;

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;
    use std::f32::consts::PI;

    #[test]
    fn headless_test_color_conversions() {
        let white = Color::new(1.0, 1.0, 1.0, 1.0);
        let w1 = Color::from((255, 255, 255, 255));
        assert_eq!(white, w1);
        let w2: u32 = white.to_rgba_u32();
        assert_eq!(w2, 0xFFFF_FFFFu32);

        let grey = Color::new(0.5019608, 0.5019608, 0.5019608, 1.0);
        let g1 = Color::from((128, 128, 128, 255));
        assert_eq!(grey, g1);
        let g2: u32 = grey.to_rgba_u32();
        assert_eq!(g2, 0x8080_80FFu32);

        let black = Color::new(0.0, 0.0, 0.0, 1.0);
        let b1 = Color::from((0, 0, 0, 255));
        assert_eq!(black, b1);
        let b2: u32 = black.to_rgba_u32();
        assert_eq!(b2, 0x0000_00FFu32);
        assert_eq!(black, Color::from_rgb_u32(0x00_0000u32));
        assert_eq!(black, Color::from_rgba_u32(0x00_0000FFu32));

        let puce1 = Color::from_rgb_u32(0xCC_8899u32);
        let puce2 = Color::from_rgba_u32(0xCC88_99FFu32);
        let puce3 = Color::from((0xCC, 0x88, 0x99, 255));
        let puce4 = Color::new(0.80, 0.53333336, 0.60, 1.0);
        assert_eq!(puce1, puce2);
        assert_eq!(puce1, puce3);
        assert_eq!(puce1, puce4);
    }

    #[test]
    fn headless_test_rect_scaling() {
        let r1 = Rect::new(0.0, 0.0, 128.0, 128.0);
        let r2 = Rect::fraction(0.0, 0.0, 32.0, 32.0, &r1);
        assert_eq!(r2, Rect::new(0.0, 0.0, 0.25, 0.25));

        let r2 = Rect::fraction(32.0, 32.0, 32.0, 32.0, &r1);
        assert_eq!(r2, Rect::new(0.25, 0.25, 0.25, 0.25));
    }

    #[test]
    fn headless_test_rect_contains() {
        let r = Rect::new(0.0, 0.0, 128.0, 128.0);
        println!("{} {} {} {}", r.top(), r.bottom(), r.left(), r.right());
        let p = Point2::new(1.0, 1.0);
        assert!(r.contains(p));

        let p = Point2::new(500.0, 0.0);
        assert!(!r.contains(p));
    }

    #[test]
    fn headless_test_rect_overlaps() {
        let r1 = Rect::new(0.0, 0.0, 128.0, 128.0);
        let r2 = Rect::new(0.0, 0.0, 64.0, 64.0);
        assert!(r1.overlaps(&r2));

        let r2 = Rect::new(100.0, 0.0, 128.0, 128.0);
        assert!(r1.overlaps(&r2));

        let r2 = Rect::new(500.0, 0.0, 64.0, 64.0);
        assert!(!r1.overlaps(&r2));
    }

    #[test]
    fn headless_test_rect_transform() {
        let mut r1 = Rect::new(0.0, 0.0, 64.0, 64.0);
        let r2 = Rect::new(64.0, 64.0, 64.0, 64.0);
        r1.translate(Vector2::new(64.0, 64.0));
        assert!(r1 == r2);

        let mut r1 = Rect::new(0.0, 0.0, 64.0, 64.0);
        let r2 = Rect::new(0.0, 0.0, 128.0, 128.0);
        r1.scale(2.0, 2.0);
        assert!(r1 == r2);

        let mut r1 = Rect::new(32.0, 32.0, 64.0, 64.0);
        let r2 = Rect::new(64.0, 64.0, 64.0, 64.0);
        r1.move_to(Point2::new(64.0, 64.0));
        assert!(r1 == r2);
    }

    #[test]
    fn headless_test_rect_combine_with() {
        {
            let a = Rect {
                x: 0.0,
                y: 0.0,
                w: 1.0,
                h: 1.0,
            };
            let b = Rect {
                x: 0.0,
                y: 0.0,
                w: 1.0,
                h: 1.0,
            };
            let c = a.combine_with(b);
            assert_relative_eq!(a, b);
            assert_relative_eq!(a, c);
        }
        {
            let a = Rect {
                x: 0.0,
                y: 0.0,
                w: 1.0,
                h: 2.0,
            };
            let b = Rect {
                x: 0.0,
                y: 0.0,
                w: 2.0,
                h: 1.0,
            };
            let real = a.combine_with(b);
            let expected = Rect {
                x: 0.0,
                y: 0.0,
                w: 2.0,
                h: 2.0,
            };
            assert_relative_eq!(real, expected);
        }
        {
            let a = Rect {
                x: -1.0,
                y: 0.0,
                w: 2.0,
                h: 2.0,
            };
            let b = Rect {
                x: 0.0,
                y: -1.0,
                w: 1.0,
                h: 1.0,
            };
            let real = a.combine_with(b);
            let expected = Rect {
                x: -1.0,
                y: -1.0,
                w: 2.0,
                h: 3.0,
            };
            assert_relative_eq!(real, expected);
        }
    }

    #[test]
    fn headless_test_rect_rotate() {
        {
            let mut r = Rect {
                x: -0.5,
                y: -0.5,
                w: 1.0,
                h: 1.0,
            };
            let expected = r;
            r.rotate(PI * 2.0);
            assert_relative_eq!(r, expected);
        }
        {
            let mut r = Rect {
                x: 0.0,
                y: 0.0,
                w: 1.0,
                h: 2.0,
            };
            r.rotate(PI * 0.5);
            let expected = Rect {
                x: -2.0,
                y: 0.0,
                w: 2.0,
                h: 1.0,
            };
            assert_relative_eq!(r, expected);
        }
        {
            let mut r = Rect {
                x: 0.0,
                y: 0.0,
                w: 1.0,
                h: 2.0,
            };
            r.rotate(PI);
            let expected = Rect {
                x: -1.0,
                y: -2.0,
                w: 1.0,
                h: 2.0,
            };
            assert_relative_eq!(r, expected);
        }
        {
            let mut r = Rect {
                x: -0.5,
                y: -0.5,
                w: 1.0,
                h: 1.0,
            };
            r.rotate(PI * 0.5);
            let expected = Rect {
                x: -0.5,
                y: -0.5,
                w: 1.0,
                h: 1.0,
            };
            assert_relative_eq!(r, expected);
        }
        {
            let mut r = Rect {
                x: 1.0,
                y: 1.0,
                w: 0.5,
                h: 2.0,
            };
            r.rotate(PI * 0.5);
            let expected = Rect {
                x: -3.0,
                y: 1.0,
                w: 2.0,
                h: 0.5,
            };
            assert_relative_eq!(r, expected);
        }
    }
}