1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
//! The `graphics` module performs the actual drawing of images, text, and other
//! objects with the `Drawable` trait.  It also handles basic loading of images
//! and text.
//!
//! This module also manages graphics state, coordinate systems, etc.
//! The default coordinate system has the origin in the upper-left
//! corner of the screen, with Y increasing downwards.
//!
//! This library differs significantly in performance characteristics from the
//! love library that it is based on. Many operations that are batched by default
//! in love (e.g. drawing primitives like rectangles or circles) are *not* batched
//! in ggez, so render loops with a large number of draw calls can be very slow.
//! The primary solution to efficiently rendering a large number of primitives is
//! a `SpriteBatch`, which can be orders of magnitude more efficient than individual
//! draw calls.

use std::collections::HashMap;
use std::convert::From;
use std::fmt;
use std::u16;

use gfx;
use gfx::texture;
use gfx::Device;
use gfx::Factory;
use gfx_device_gl;
use sdl2;

use conf;
use conf::WindowMode;
use context::Context;
use context::DebugId;
use GameError;
use GameResult;

mod canvas;
mod context;
mod drawparam;
mod image;
mod mesh;
mod shader;
mod text;
mod text_cached;
mod types;
use nalgebra as na;

pub mod spritebatch;

pub use self::canvas::*;
pub(crate) use self::context::*;
pub use self::drawparam::*;
pub use self::image::*;
pub use self::mesh::*;
pub use self::shader::*;
pub use self::text::*;
pub use self::text_cached::*;
pub use self::types::*;

/// A marker trait saying that something is a label for a particular backend,
/// with associated gfx-rs types for that backend.
pub trait BackendSpec: fmt::Debug {
    /// Surface type
    type SurfaceType: gfx::format::Formatted;
    /// gfx resource type
    type Resources: gfx::Resources;
    /// gfx factory type
    type Factory: gfx::Factory<Self::Resources>;
    /// gfx command buffer type
    type CommandBuffer: gfx::CommandBuffer<Self::Resources>;
    /// gfx device type
    type Device: gfx::Device<Resources = Self::Resources, CommandBuffer = Self::CommandBuffer>;

    /// A helper function to take a RawShaderResourceView and turn it into a typed one based on
    /// the surface type defined in a `BackendSpec`
    fn raw_to_typed_shader_resource(
        texture_view: gfx::handle::RawShaderResourceView<Self::Resources>,
    ) -> gfx::handle::ShaderResourceView<
        <Self as BackendSpec>::Resources,
        <<Self as BackendSpec>::SurfaceType as gfx::format::Formatted>::View,
    > {
        let typed_view: gfx::handle::ShaderResourceView<
            _,
            <<Self as BackendSpec>::SurfaceType as gfx::format::Formatted>::View,
        > = gfx::memory::Typed::new(texture_view);
        typed_view
    }
}

/// A backend specification for OpenGL.
/// This is different from `conf::Backend` because
/// this needs to be its own struct to implement traits upon,
/// and because there may need to be a layer of translation
/// between what the user specifies in the config, and what the
/// graphics backend init code actually gets.
///
/// You shouldn't normally need to fiddle with this directly
/// but it has to be exported cause generic types like
/// `Shader` depend on it.
#[derive(Debug, Copy, Clone, PartialEq, Eq, SmartDefault, Hash)]
pub struct GlBackendSpec {
    #[default = r#"3"#]
    major: u8,
    #[default = r#"2"#]
    minor: u8,
}

impl From<conf::Backend> for GlBackendSpec {
    fn from(c: conf::Backend) -> Self {
        match c {
            conf::Backend::OpenGL { major, minor } => Self { major, minor },
        }
    }
}

impl BackendSpec for GlBackendSpec {
    type SurfaceType = gfx::format::Srgba8;
    type Resources = gfx_device_gl::Resources;
    type Factory = gfx_device_gl::Factory;
    type CommandBuffer = gfx_device_gl::CommandBuffer;
    type Device = gfx_device_gl::Device;
}

const QUAD_VERTS: [Vertex; 4] = [
    Vertex {
        pos: [0.0, 0.0],
        uv: [0.0, 0.0],
    },
    Vertex {
        pos: [1.0, 0.0],
        uv: [1.0, 0.0],
    },
    Vertex {
        pos: [1.0, 1.0],
        uv: [1.0, 1.0],
    },
    Vertex {
        pos: [0.0, 1.0],
        uv: [0.0, 1.0],
    },
];

const QUAD_INDICES: [u16; 6] = [0, 1, 2, 0, 2, 3];

gfx_defines!{
    /// Internal structure containing vertex data.
    vertex Vertex {
        pos: [f32; 2] = "a_Pos",
        uv: [f32; 2] = "a_Uv",
    }

    /// Internal structure containing values that are different for each
    /// drawable object.
    vertex InstanceProperties {
        // the columns here are for the transform matrix;
        // you can't shove a full matrix into an instance
        // buffer, annoyingly.
        src: [f32; 4] = "a_Src",
        col1: [f32; 4] = "a_TCol1",
        col2: [f32; 4] = "a_TCol2",
        col3: [f32; 4] = "a_TCol3",
        col4: [f32; 4] = "a_TCol4",
        color: [f32; 4] = "a_Color",
    }

    /// Internal structure containing global shader state.
    constant Globals {
        mvp_matrix: [[f32; 4]; 4] = "u_MVP",
    }

    // Internal structure containing graphics pipeline state.
    // This can't be a doc comment though because it somehow
    // breaks the gfx_defines! macro though.  :-(
    pipeline pipe {
        vbuf: gfx::VertexBuffer<Vertex> = (),
        tex: gfx::TextureSampler<[f32; 4]> = "t_Texture",
        globals: gfx::ConstantBuffer<Globals> = "Globals",
        rect_instance_properties: gfx::InstanceBuffer<InstanceProperties> = (),
        out: gfx::RawRenderTarget =
          ("Target0", GraphicsContext::get_format(), gfx::state::ColorMask::all(), Some(gfx::preset::blend::ALPHA)),
    }
}

impl Default for InstanceProperties {
    fn default() -> Self {
        InstanceProperties {
            src: [0.0, 0.0, 1.0, 1.0],
            col1: [1.0, 0.0, 0.0, 0.0],
            col2: [0.0, 1.0, 0.0, 0.0],
            col3: [1.0, 0.0, 1.0, 0.0],
            col4: [1.0, 0.0, 0.0, 1.0],
            color: [1.0, 1.0, 1.0, 1.0],
        }
    }
}

impl From<DrawParam> for InstanceProperties {
    fn from(p: DrawParam) -> Self {
        let mat: [[f32; 4]; 4] = p.into_matrix().into();
        // SRGB BUGGO: Only convert if the color format is srgb!
        let linear_color: types::LinearColor = p.color
            .expect("Converting DrawParam to InstanceProperties had None for a color; this should never happen!")
            .into();
        Self {
            src: p.src.into(),
            col1: mat[0],
            col2: mat[1],
            col3: mat[2],
            col4: mat[3],
            color: linear_color.into(),
        }
    }
}

/// A structure for conveniently storing Sampler's, based off
/// their `SamplerInfo`.
pub(crate) struct SamplerCache<B>
where
    B: BackendSpec,
{
    samplers: HashMap<texture::SamplerInfo, gfx::handle::Sampler<B::Resources>>,
}

impl<B> SamplerCache<B>
where
    B: BackendSpec,
{
    fn new() -> Self {
        SamplerCache {
            samplers: HashMap::new(),
        }
    }

    fn get_or_insert(
        &mut self,
        info: texture::SamplerInfo,
        factory: &mut B::Factory,
    ) -> gfx::handle::Sampler<B::Resources> {
        let sampler = self.samplers
            .entry(info)
            .or_insert_with(|| factory.create_sampler(info));
        sampler.clone()
    }
}

impl From<gfx::buffer::CreationError> for GameError {
    fn from(e: gfx::buffer::CreationError) -> Self {
        use gfx::buffer::CreationError;
        match e {
            CreationError::UnsupportedBind(b) => GameError::RenderError(format!(
                "Could not create buffer: Unsupported Bind ({:?})",
                b
            )),
            CreationError::UnsupportedUsage(u) => GameError::RenderError(format!(
                "Could not create buffer: Unsupported Usage ({:?})",
                u
            )),
            CreationError::Other => {
                GameError::RenderError("Could not create buffer: Unknown error".to_owned())
            }
        }
    }
}

// **********************************************************************
// DRAWING
// **********************************************************************

trait TransformRawRenderTargetViewToRenderTargetView<F: gfx::format::Formatted> {
    type Result;
}

/// Clear the screen to the background color.
pub fn clear(ctx: &mut Context) {
    let gfx = &mut ctx.gfx_context;
    // SRGB BUGGO: Only convert when drawing on srgb surface
    let linear_color: types::LinearColor = gfx.background_color.into();
    type ColorFormat = <GlBackendSpec as BackendSpec>::SurfaceType;
    let typed_render_target: gfx::handle::RenderTargetView<_, ColorFormat> =
        gfx::memory::Typed::new(gfx.data.out.clone());
    gfx.encoder.clear(&typed_render_target, linear_color.into());
}

/// Draws the given `Drawable` object to the screen by calling its
/// `draw()` method.
pub fn draw(ctx: &mut Context, drawable: &Drawable, dest: Point2, rotation: f32) -> GameResult<()> {
    drawable.draw(ctx, dest, rotation)
}

/// Draws the given `Drawable` object to the screen by calling its `draw_ex()` method.
pub fn draw_ex(ctx: &mut Context, drawable: &Drawable, params: DrawParam) -> GameResult<()> {
    drawable.draw_ex(ctx, params)
}

/// Tells the graphics system to actually put everything on the screen.
/// Call this at the end of your `EventHandler`'s `draw()` method.
///
/// Unsets any active canvas.
pub fn present(ctx: &mut Context) {
    let gfx = &mut ctx.gfx_context;
    gfx.data.out = gfx.screen_render_target.clone();
    // We might want to give the user more control over when the
    // encoder gets flushed eventually, if we want them to be able
    // to do their own gfx drawing.  HOWEVER, the whole pipeline type
    // thing is a bigger hurdle, so this is fine for now.
    gfx.encoder.flush(&mut *gfx.device);
    gfx.window.gl_swap_window();
    gfx.device.cleanup();
}

/// Take a screenshot by outputting the current render surface
/// (screen or selected canvas) to a PNG file.
pub fn screenshot(ctx: &mut Context) -> GameResult<Image> {
    use gfx::memory::Bind;
    let debug_id = DebugId::get(ctx);

    let gfx = &mut ctx.gfx_context;
    let (w, h, _depth, aa) = gfx.data.out.get_dimensions();
    let surface_format = gfx.color_format;
    let gfx::format::Format(surface_type, channel_type) = surface_format;

    let texture_kind = gfx::texture::Kind::D2(w, h, aa);
    let texture_info = gfx::texture::Info {
        kind: texture_kind,
        levels: 1,
        format: surface_type,
        bind: Bind::TRANSFER_SRC | Bind::TRANSFER_DST | Bind::SHADER_RESOURCE,
        usage: gfx::memory::Usage::Data,
    };
    let target_texture = gfx.factory
        .create_texture_raw(texture_info, Some(channel_type), None)?;
    let image_info = gfx::texture::ImageInfoCommon {
        xoffset: 0,
        yoffset: 0,
        zoffset: 0,
        width: w,
        height: h,
        depth: 0,
        format: surface_format,
        mipmap: 0,
    };

    let mut local_encoder: gfx::Encoder<gfx_device_gl::Resources, gfx_device_gl::CommandBuffer> =
        gfx.factory.create_command_buffer().into();

    local_encoder.copy_texture_to_texture_raw(
        gfx.data.out.get_texture(),
        None,
        image_info,
        &target_texture,
        None,
        image_info,
    )?;

    local_encoder.flush(&mut *gfx.device);

    let resource_desc = gfx::texture::ResourceDesc {
        channel: channel_type,
        layer: None,
        min: 0,
        max: 0,
        swizzle: gfx::format::Swizzle::new(),
    };
    let shader_resource = gfx.factory
        .view_texture_as_shader_resource_raw(&target_texture, resource_desc)?;
    let image = Image {
        texture: shader_resource,
        texture_handle: target_texture,
        sampler_info: gfx.default_sampler_info,
        blend_mode: None,
        width: u32::from(w),
        height: u32::from(h),
        debug_id: debug_id,
    };

    Ok(image)
}

/*
// Draw an arc.
// Punting on this until later.
pub fn arc(_ctx: &mut Context,
           _mode: DrawMode,
           _point: Point,
           _radius: f32,
           _angle1: f32,
           _angle2: f32,
           _segments: u32)
           -> GameResult<()> {
    unimplemented!();
}
*/

/// Draw a circle.
///
/// Allocates a new `Mesh`, draws it, and throws it away, so if you are drawing many of them
/// you should create the `Mesh` yourself.
///
/// For the meaning of the `tolerance` parameter, [see here](https://docs.rs/lyon_geom/0.9.0/lyon_geom/#flattening).
pub fn circle(
    ctx: &mut Context,
    mode: DrawMode,
    point: Point2,
    radius: f32,
    tolerance: f32,
) -> GameResult<()> {
    let m = Mesh::new_circle(ctx, mode, point, radius, tolerance)?;
    m.draw(ctx, Point2::origin(), 0.0)
}

/// Draw an ellipse.
///
/// Allocates a new `Mesh`, draws it, and throws it away, so if you are drawing many of them
/// you should create the `Mesh` yourself.
///
/// For the meaning of the `tolerance` parameter, [see here](https://docs.rs/lyon_geom/0.9.0/lyon_geom/#flattening).
pub fn ellipse(
    ctx: &mut Context,
    mode: DrawMode,
    point: Point2,
    radius1: f32,
    radius2: f32,
    tolerance: f32,
) -> GameResult<()> {
    let m = Mesh::new_ellipse(ctx, mode, point, radius1, radius2, tolerance)?;
    m.draw(ctx, Point2::origin(), 0.0)
}

/// Draws a line of one or more connected segments.
///
/// Allocates a new `Mesh`, draws it, and throws it away, so if you are drawing many of them
/// you should create the `Mesh` yourself.
pub fn line(ctx: &mut Context, points: &[Point2], width: f32) -> GameResult<()> {
    let m = Mesh::new_line(ctx, points, width)?;
    m.draw(ctx, Point2::origin(), 0.0)
}

/// Draws points (as rectangles)
///
/// Allocates a new `Mesh`, draws it, and throws it away, so if you are drawing many of them
/// you should create the `Mesh` yourself.
pub fn points(ctx: &mut Context, points: &[Point2], point_size: f32) -> GameResult<()> {
    for p in points {
        let r = Rect::new(p.x, p.y, point_size, point_size);
        rectangle(ctx, DrawMode::Fill, r)?;
    }
    Ok(())
}

/// Draws a closed polygon
///
/// Allocates a new `Mesh`, draws it, and throws it away, so if you are drawing many of them
/// you should create the `Mesh` yourself.
pub fn polygon(ctx: &mut Context, mode: DrawMode, vertices: &[Point2]) -> GameResult<()> {
    let m = Mesh::new_polygon(ctx, mode, vertices)?;
    m.draw(ctx, Point2::origin(), 0.0)
}

// Renders text with the default font.
// Not terribly efficient as it re-renders the text with each call,
// but good enough for debugging.
// Doesn't actually work, double-borrow on ctx.  Bah.
// pub fn print(ctx: &mut Context, dest: Point, text: &str) -> GameResult<()> {
//     let rendered_text = {
//         let font = &ctx.default_font;
//         text::Text::new(ctx, text, font)?
//     };
//     draw(ctx, &rendered_text, dest, 0.0)
// }

/// Draws a rectangle.
///
/// Allocates a new `Mesh`, draws it, and throws it away, so if you are drawing many of them
/// you should create the `Mesh` yourself.
pub fn rectangle(ctx: &mut Context, mode: DrawMode, rect: Rect) -> GameResult<()> {
    let x1 = rect.x;
    let x2 = rect.x + rect.w;
    let y1 = rect.y;
    let y2 = rect.y + rect.h;
    let pts = [
        Point2::new(x1, y1),
        Point2::new(x2, y1),
        Point2::new(x2, y2),
        Point2::new(x1, y2),
    ];
    polygon(ctx, mode, &pts)
}

// **********************************************************************
// GRAPHICS STATE
// **********************************************************************

/// Returns the current background color.
pub fn get_background_color(ctx: &Context) -> Color {
    ctx.gfx_context.background_color
}

/// Returns the current foreground color.
pub fn get_color(ctx: &Context) -> Color {
    ctx.gfx_context.foreground_color
}

/// Get the default filter mode for new images.
pub fn get_default_filter(ctx: &Context) -> FilterMode {
    let gfx = &ctx.gfx_context;
    gfx.default_sampler_info.filter.into()
}

/// Returns a string that tells a little about the obtained rendering mode.
/// It is supposed to be human-readable and will change; do not try to parse
/// information out of it!
pub fn get_renderer_info(ctx: &Context) -> GameResult<String> {
    let video = ctx.sdl_context.video()?;

    let gl = video.gl_attr();

    Ok(format!(
        "Requested GL {}.{} Core profile, actually got GL {}.{} {:?} profile.",
        ctx.gfx_context.backend_spec.major,
        ctx.gfx_context.backend_spec.minor,
        gl.context_major_version(),
        gl.context_minor_version(),
        gl.context_profile()
    ))
}

/// Returns a rectangle defining the coordinate system of the screen.
/// It will be `Rect { x: left, y: top, w: width, h: height }`
///
/// If the Y axis increases downwards, the `height` of the Rect
/// will be negative.
pub fn get_screen_coordinates(ctx: &Context) -> Rect {
    ctx.gfx_context.screen_rect
}

/// Sets the background color.  Default: blue.
pub fn set_background_color(ctx: &mut Context, color: Color) {
    ctx.gfx_context.background_color = color;
}

/// Sets the foreground color, which will be used for drawing
/// rectangles, lines, etc.  Default: white.
pub fn set_color(ctx: &mut Context, color: Color) -> GameResult<()> {
    let gfx = &mut ctx.gfx_context;
    gfx.foreground_color = color;
    Ok(())
}

/// Sets the default filter mode used to scale images.
///
/// This does not apply retroactively to already created images.
pub fn set_default_filter(ctx: &mut Context, mode: FilterMode) {
    let gfx = &mut ctx.gfx_context;
    let new_mode = mode.into();
    let sampler_info = texture::SamplerInfo::new(new_mode, texture::WrapMode::Clamp);
    // We create the sampler now so we don't end up creating it at some
    // random-ass time while we're trying to draw stuff.
    let _sampler = gfx.samplers.get_or_insert(sampler_info, &mut *gfx.factory);
    gfx.default_sampler_info = sampler_info;
}

/// Sets the bounds of the screen viewport.
///
/// The default coordinate system has (0,0) at the top-left corner
/// with X increasing to the right and Y increasing down, with the
/// viewport scaled such that one coordinate unit is one pixel on the
/// screen.  This function lets you change this coordinate system to
/// be whatever you prefer.
///
/// The `Rect`'s x and y will define the top-left corner of the screen,
/// and that plus its w and h will define the bottom-right corner.
pub fn set_screen_coordinates(context: &mut Context, rect: Rect) -> GameResult<()> {
    let gfx = &mut context.gfx_context;
    gfx.set_projection_rect(rect);
    gfx.calculate_transform_matrix();
    gfx.update_globals()
}

/// Sets the raw projection matrix to the given homogeneous
/// transformation matrix.
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
pub fn set_projection(context: &mut Context, proj: Matrix4) {
    let gfx = &mut context.gfx_context;
    gfx.set_projection(proj);
}

/// Premultiplies the given transformation matrix with the current projection matrix
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
pub fn transform_projection(context: &mut Context, transform: Matrix4) {
    let gfx = &mut context.gfx_context;
    let curr = gfx.get_projection();
    gfx.set_projection(transform * curr);
}

/// Gets a copy of the context's raw projection matrix
pub fn get_projection(context: &Context) -> Matrix4 {
    let gfx = &context.gfx_context;
    gfx.get_projection()
}

/// Pushes a homogeneous transform matrix to the top of the transform
/// (model) matrix stack of the `Context`. If no matrix is given, then
/// pushes a copy of the current transform matrix to the top of the stack.
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
///
/// A `DrawParam` can be converted into an appropriate transform
/// matrix by calling `param.into_matrix()`.
pub fn push_transform(context: &mut Context, transform: Option<Matrix4>) {
    let gfx = &mut context.gfx_context;
    if let Some(t) = transform {
        gfx.push_transform(t);
    } else {
        let copy = *gfx.modelview_stack
            .last()
            .expect("Matrix stack empty, should never happen");
        gfx.push_transform(copy);
    }
}

/// Pops the transform matrix off the top of the transform
/// (model) matrix stack of the `Context`.
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
pub fn pop_transform(context: &mut Context) {
    let gfx = &mut context.gfx_context;
    gfx.pop_transform();
}

/// Sets the current model transformation to the given homogeneous
/// transformation matrix.
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
///
/// A `DrawParam` can be converted into an appropriate transform
/// matrix by calling `param.into_matrix()`.
pub fn set_transform(context: &mut Context, transform: Matrix4) {
    let gfx = &mut context.gfx_context;
    gfx.set_transform(transform);
}

/// Gets a copy of the context's current transform matrix
pub fn get_transform(context: &Context) -> Matrix4 {
    let gfx = &context.gfx_context;
    gfx.get_transform()
}

/// Premultiplies the given transform with the current model transform.
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
///
/// A `DrawParam` can be converted into an appropriate transform
/// matrix by calling `param.into_matrix()`.
pub fn transform(context: &mut Context, transform: Matrix4) {
    let gfx = &mut context.gfx_context;
    let curr = gfx.get_transform();
    gfx.set_transform(transform * curr);
}

/// Sets the current model transform to the origin transform (no transformation)
///
/// You must call `apply_transformations(ctx)` after calling this to apply
/// these changes and recalculate the underlying MVP matrix.
pub fn origin(context: &mut Context) {
    let gfx = &mut context.gfx_context;
    gfx.set_transform(Matrix4::identity());
}

/// Calculates the new total transformation (Model-View-Projection) matrix
/// based on the matrices at the top of the transform and view matrix stacks
/// and sends it to the graphics card.
pub fn apply_transformations(context: &mut Context) -> GameResult<()> {
    let gfx = &mut context.gfx_context;
    gfx.calculate_transform_matrix();
    gfx.update_globals()
}

/// Sets the blend mode of the currently active shader program
pub fn set_blend_mode(ctx: &mut Context, mode: BlendMode) -> GameResult<()> {
    ctx.gfx_context.set_blend_mode(mode)
}

/// Sets the window mode, such as the size and other properties.
///
/// Setting the window mode may have side effects, such as clearing
/// the screen or setting the screen coordinates viewport to some undefined value.
/// It is recommended to call `set_screen_coordinates()` after changing the window
/// size to make sure everything is what you want it to be.
pub fn set_mode(context: &mut Context, mode: WindowMode) -> GameResult<()> {
    {
        let gfx = &mut context.gfx_context;
        gfx.set_window_mode(mode)?;
    }
    {
        let video = &mut context.sdl_context.video()?;
        GraphicsContext::set_vsync(video, mode.vsync)
    }
}

/// Toggles the fullscreen state of the window subsystem
///
pub fn set_fullscreen(context: &mut Context, fullscreen: bool) -> GameResult<()> {
    let fs_type = if fullscreen {
        sdl2::video::FullscreenType::True
    } else {
        sdl2::video::FullscreenType::Off
    };
    let gfx = &mut context.gfx_context;
    gfx.window.set_fullscreen(fs_type)?;

    Ok(())
}

/// Queries the fullscreen state of the window subsystem.
/// If true, then the game is running in fullscreen mode.
///
pub fn is_fullscreen(context: &mut Context) -> bool {
    let gfx = &context.gfx_context;
    gfx.window.fullscreen_state() == sdl2::video::FullscreenType::True
}

/// Sets the window resolution based on the specified width and height
///
pub fn set_resolution(context: &mut Context, width: u32, height: u32) -> GameResult<()> {
    let mut window_mode = context.conf.window_mode;
    window_mode.width = width;
    window_mode.height = height;
    set_mode(context, window_mode)
}

/// Returns a `Vec` of `(width, height)` tuples describing what
/// fullscreen resolutions are available for the given display.
pub fn get_fullscreen_modes(context: &Context, display_idx: i32) -> GameResult<Vec<(u32, u32)>> {
    let video = context.sdl_context.video()?;
    let display_count = video.num_video_displays()?;
    assert!(display_idx < display_count);

    let num_modes = video.num_display_modes(display_idx)?;

    (0..num_modes)
        .map(|i| video.display_mode(display_idx, i))
        .map(|ires| ires.map_err(GameError::VideoError))
        .map(|gres| gres.map(|dispmode| (dispmode.w as u32, dispmode.h as u32)))
        .collect()
}

/// Returns the number of connected displays.
pub fn get_display_count(context: &Context) -> GameResult<i32> {
    let video = context.sdl_context.video()?;
    video.num_video_displays().map_err(GameError::VideoError)
}

/// Returns a reference to the SDL window.
/// Ideally you should not need to use this because ggez
/// would provide all the functions you need without having
/// to dip into SDL itself.  But life isn't always ideal.
pub fn get_window(context: &Context) -> &sdl2::video::Window {
    let gfx = &context.gfx_context;
    &gfx.window
}

/// Returns a mutable reference to the SDL window.
pub fn get_window_mut(context: &mut Context) -> &mut sdl2::video::Window {
    let gfx = &mut context.gfx_context;
    &mut gfx.window
}

/// Returns the size of the window in pixels as (width, height).
pub fn get_size(context: &Context) -> (u32, u32) {
    let gfx = &context.gfx_context;
    gfx.window.size()
}

/// Returns the size of the window's underlying drawable in pixels as (width, height).
/// This may return a different value than `get_size()` when run on a platform with high-DPI support
pub fn get_drawable_size(context: &Context) -> (u32, u32) {
    let gfx = &context.gfx_context;
    gfx.window.drawable_size()
}

/// Returns the gfx-rs `Factory` object for ggez's rendering context.
pub fn get_factory(context: &mut Context) -> &mut gfx_device_gl::Factory {
    let gfx = &mut context.gfx_context;
    &mut gfx.factory
}

/// Returns the gfx-rs `Device` object for ggez's rendering context.
pub fn get_device(context: &mut Context) -> &mut gfx_device_gl::Device {
    let gfx = &mut context.gfx_context;
    gfx.device.as_mut()
}

/// Returns the gfx-rs `Encoder` object for ggez's rendering context.
pub fn get_encoder(
    context: &mut Context,
) -> &mut gfx::Encoder<gfx_device_gl::Resources, gfx_device_gl::CommandBuffer> {
    let gfx = &mut context.gfx_context;
    &mut gfx.encoder
}

/// Returns the gfx-rs depth target object for ggez's rendering context.
pub fn get_depth_view(
    context: &mut Context,
) -> gfx::handle::RawDepthStencilView<gfx_device_gl::Resources> {
    let gfx = &mut context.gfx_context;
    gfx.depth_view.clone()
}

/// Returns the gfx-rs color target object for ggez's rendering context.
pub fn get_screen_render_target(
    context: &Context,
) -> gfx::handle::RawRenderTargetView<gfx_device_gl::Resources> {
    let gfx = &context.gfx_context;
    gfx.data.out.clone()
}

/// Returns raw `gfx-rs` state objects, if you want to use `gfx-rs` to write
/// your own graphics pipeline then this gets you the interfaces you need
/// to do so.
/// Returns all the relevant objects at once;
/// getting them one by one is awkward 'cause it tends to create double-borrows
/// on the Context object.
pub fn get_gfx_objects(
    context: &mut Context,
) -> (
    &mut <GlBackendSpec as BackendSpec>::Factory,
    &mut <GlBackendSpec as BackendSpec>::Device,
    &mut gfx::Encoder<
        <GlBackendSpec as BackendSpec>::Resources,
        <GlBackendSpec as BackendSpec>::CommandBuffer,
    >,
    gfx::handle::RawDepthStencilView<<GlBackendSpec as BackendSpec>::Resources>,
    gfx::handle::RawRenderTargetView<<GlBackendSpec as BackendSpec>::Resources>,
) {
    let gfx = &mut context.gfx_context;
    let f = &mut gfx.factory;
    let d = gfx.device.as_mut();
    let e = &mut gfx.encoder;
    let dv = gfx.depth_view.clone();
    let cv = gfx.data.out.clone();
    (f, d, e, dv, cv)
}

/// All types that can be drawn on the screen implement the `Drawable` trait.
pub trait Drawable {
    /// Actually draws the object to the screen.
    ///
    /// This is the most general version of the operation, which is all that
    /// is required for implementing this trait.
    fn draw_ex(&self, ctx: &mut Context, param: DrawParam) -> GameResult<()>;

    /// Draws the drawable onto the rendering target.
    ///
    /// It just is a shortcut that calls `draw_ex()` with a default `DrawParam`
    /// except for the destination and rotation.
    ///
    /// * `ctx` - The `Context` this graphic will be rendered to.
    /// * `dest` - the position to draw the graphic expressed as a `Point2`.
    /// * `rotation` - orientation of the graphic in radians.
    ///
    fn draw(&self, ctx: &mut Context, dest: Point2, rotation: f32) -> GameResult<()> {
        self.draw_ex(
            ctx,
            DrawParam {
                dest,
                rotation,
                ..Default::default()
            },
        )
    }

    /// Sets the blend mode to be used when drawing this drawable.
    /// This overrides the general `graphics::set_blend_mode()`.
    /// If `None` is set, defers to the blend mode set by
    /// `graphics::set_blend_mode()`.
    fn set_blend_mode(&mut self, mode: Option<BlendMode>);

    /// Gets the blend mode to be used when drawing this drawable.
    fn get_blend_mode(&self) -> Option<BlendMode>;
}

#[cfg(test)]
mod tests {}