1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
use geo_types::{Coord, Line, Point, Triangle};
use spade::{
    ConstrainedDelaunayTriangulation, DelaunayTriangulation, Point2, SpadeNum, Triangulation,
};

use crate::{
    line_intersection::line_intersection, CoordsIter, EuclideanDistance, GeoFloat,
    LineIntersection, LinesIter,
};
use crate::{Centroid, Contains};

// ======== Config ============

/// Collection of parameters that influence the precision of the algorithm in some sense (see
/// explanations on fields of this struct)
///
/// This implements the `Default` trait and you can just use it most of the time
#[derive(Debug, Clone)]
pub struct SpadeTriangulationConfig<T: SpadeTriangulationFloat> {
    /// Coordinates within this radius are snapped to the same position. For any two `Coords` there's
    /// no real way to influence the decision when choosing the snapper and the snappee
    pub snap_radius: T,
}

impl<T> Default for SpadeTriangulationConfig<T>
where
    T: SpadeTriangulationFloat,
{
    fn default() -> Self {
        Self {
            snap_radius: <T as std::convert::From<f32>>::from(0.000_1),
        }
    }
}

// ====== Error ========

#[derive(Debug)]
pub enum TriangulationError {
    SpadeError(spade::InsertionError),
    LoopTrap,
    ConstraintFailure,
}

impl std::fmt::Display for TriangulationError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:?}", self)
    }
}

impl std::error::Error for TriangulationError {}

pub type TriangulationResult<T> = Result<T, TriangulationError>;

// ======= Float trait ========

pub trait SpadeTriangulationFloat: GeoFloat + SpadeNum {}
impl<T: GeoFloat + SpadeNum> SpadeTriangulationFloat for T {}

// ======= Triangulation trait =========

pub type Triangles<T> = Vec<Triangle<T>>;

// seal the trait that needs to be implemented for TriangulateSpade to be implemented. This is done
// so that we don't leak these weird methods on the public interface.
mod private {
    use super::*;

    pub(crate) type CoordsIter<'a, T> = Box<dyn Iterator<Item = Coord<T>> + 'a>;

    pub trait TriangulationRequirementTrait<'a, T>
    where
        T: SpadeTriangulationFloat,
    {
        /// collect all the lines that are relevant for triangulations from the geometric object that
        /// should be triangulated.
        ///
        /// intersecting lines are allowed
        fn lines(&'a self) -> Vec<Line<T>>;
        /// collect all the coords that are relevant for triangulations from the geometric object that
        /// should be triangulated
        fn coords(&'a self) -> CoordsIter<T>;
        /// define a predicate that decides if a point is inside of the object (used for constrained triangulation)
        fn contains_point(&'a self, p: Point<T>) -> bool;

        // processing of the lines that prepare the lines for triangulation.
        //
        // `spade` has the general limitation that constraint lines cannot intersect or else it
        // will panic. This is why we need to manually split up the lines into smaller parts at the
        // intersection point
        //
        // there's also a preprocessing step which tries to minimize the risk of failure of the algo
        // through edge cases (thin/flat triangles are prevented as much as possible & lines are deduped, ...)
        fn cleanup_lines(lines: Vec<Line<T>>, snap_radius: T) -> TriangulationResult<Vec<Line<T>>> {
            let (known_coords, lines) = preprocess_lines(lines, snap_radius);
            prepare_intersection_contraint(lines, known_coords, snap_radius)
        }
    }
}

/// Triangulate polygons using a [Delaunay
/// Triangulation](https://en.wikipedia.org/wiki/Delaunay_triangulation)
///
/// This trait contains both constrained and unconstrained triangulation methods. To read more
/// about the differences of these methods also consult [this
/// page](https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation)
pub trait TriangulateSpade<'a, T>: private::TriangulationRequirementTrait<'a, T>
where
    T: SpadeTriangulationFloat,
{
    /// returns a triangulation that's solely based on the points of the geometric object
    ///
    /// The triangulation is guaranteed to be Delaunay
    ///
    /// Note that the lines of the triangulation don't necessarily follow the lines of the input
    /// geometry. If you wish to achieve that take a look at the `constrained_triangulation` and the
    /// `constrained_outer_triangulation` functions.
    ///
    /// ```rust
    /// use geo::TriangulateSpade;
    /// use geo::{Polygon, LineString, Coord};
    /// let u_shape = Polygon::new(
    ///     LineString::new(vec![
    ///         Coord { x: 0.0, y: 0.0 },
    ///         Coord { x: 1.0, y: 0.0 },
    ///         Coord { x: 1.0, y: 1.0 },
    ///         Coord { x: 2.0, y: 1.0 },
    ///         Coord { x: 2.0, y: 0.0 },
    ///         Coord { x: 3.0, y: 0.0 },
    ///         Coord { x: 3.0, y: 3.0 },
    ///         Coord { x: 0.0, y: 3.0 },
    ///     ]),
    ///     vec![],
    /// );
    /// let unconstrained_triangulation = u_shape.unconstrained_triangulation().unwrap();
    /// let num_triangles = unconstrained_triangulation.len();
    /// assert_eq!(num_triangles, 8);
    /// ```
    ///
    fn unconstrained_triangulation(&'a self) -> TriangulationResult<Triangles<T>> {
        let points = self.coords();
        points
            .into_iter()
            .map(to_spade_point)
            .try_fold(DelaunayTriangulation::<Point2<T>>::new(), |mut tris, p| {
                tris.insert(p).map_err(TriangulationError::SpadeError)?;
                Ok(tris)
            })
            .map(triangulation_to_triangles)
    }

    /// returns triangulation that's based on the points of the geometric object and also
    /// incorporates the lines of the input geometry
    ///
    /// The triangulation is not guaranteed to be Delaunay because of the constraint lines
    ///
    /// This outer triangulation also contains triangles that are not included in the input
    /// geometry if it wasn't convex. Here's an example:
    ///
    /// ```text
    /// ┌──────────────────┐
    /// │\              __/│
    /// │ \          __/ / │
    /// │  \      __/   /  │
    /// │   \  __/     /   │
    /// │    \/       /    │
    /// │     ┌──────┐     │
    /// │    /│\:::::│\    │
    /// │   / │:\::::│ \   │
    /// │  /  │::\:::│  \  │
    /// │ /   │:::\::│   \ │
    /// │/    │::::\:│    \│
    /// └─────┘______└─────┘
    /// ```
    ///
    /// ```rust
    /// use geo::TriangulateSpade;
    /// use geo::{Polygon, LineString, Coord};
    /// let u_shape = Polygon::new(
    ///     LineString::new(vec![
    ///         Coord { x: 0.0, y: 0.0 },
    ///         Coord { x: 1.0, y: 0.0 },
    ///         Coord { x: 1.0, y: 1.0 },
    ///         Coord { x: 2.0, y: 1.0 },
    ///         Coord { x: 2.0, y: 0.0 },
    ///         Coord { x: 3.0, y: 0.0 },
    ///         Coord { x: 3.0, y: 3.0 },
    ///         Coord { x: 0.0, y: 3.0 },
    ///     ]),
    ///     vec![],
    /// );
    /// // we use the default [`SpadeTriangulationConfig`] here
    /// let constrained_outer_triangulation =
    /// u_shape.constrained_outer_triangulation(Default::default()).unwrap();
    /// let num_triangles = constrained_outer_triangulation.len();
    /// assert_eq!(num_triangles, 8);
    /// ```
    ///
    /// The outer triangulation of the top down U-shape contains extra triangles marked
    /// with ":". If you want to exclude those, take a look at `constrained_triangulation`
    fn constrained_outer_triangulation(
        &'a self,
        config: SpadeTriangulationConfig<T>,
    ) -> TriangulationResult<Triangles<T>> {
        let lines = self.lines();
        let lines = Self::cleanup_lines(lines, config.snap_radius)?;
        lines
            .into_iter()
            .map(to_spade_line)
            .try_fold(
                ConstrainedDelaunayTriangulation::<Point2<T>>::new(),
                |mut cdt, [start, end]| {
                    let start = cdt.insert(start).map_err(TriangulationError::SpadeError)?;
                    let end = cdt.insert(end).map_err(TriangulationError::SpadeError)?;
                    // safety check (to prevent panic) whether we can add the line
                    if !cdt.can_add_constraint(start, end) {
                        return Err(TriangulationError::ConstraintFailure);
                    }
                    cdt.add_constraint(start, end);
                    Ok(cdt)
                },
            )
            .map(triangulation_to_triangles)
    }

    /// returns triangulation that's based on the points of the geometric object and also
    /// incorporates the lines of the input geometry
    ///
    /// The triangulation is not guaranteed to be Delaunay because of the constraint lines
    ///
    /// This triangulation only contains triangles that are included in the input geometry.
    /// Here's an example:
    ///
    /// ```text
    /// ┌──────────────────┐
    /// │\              __/│
    /// │ \          __/ / │
    /// │  \      __/   /  │
    /// │   \  __/     /   │
    /// │    \/       /    │
    /// │     ┌──────┐     │
    /// │    /│      │\    │
    /// │   / │      │ \   │
    /// │  /  │      │  \  │
    /// │ /   │      │   \ │
    /// │/    │      │    \│
    /// └─────┘      └─────┘
    /// ```
    ///
    /// ```rust
    /// use geo::TriangulateSpade;
    /// use geo::{Polygon, LineString, Coord};
    /// let u_shape = Polygon::new(
    ///     LineString::new(vec![
    ///         Coord { x: 0.0, y: 0.0 },
    ///         Coord { x: 1.0, y: 0.0 },
    ///         Coord { x: 1.0, y: 1.0 },
    ///         Coord { x: 2.0, y: 1.0 },
    ///         Coord { x: 2.0, y: 0.0 },
    ///         Coord { x: 3.0, y: 0.0 },
    ///         Coord { x: 3.0, y: 3.0 },
    ///         Coord { x: 0.0, y: 3.0 },
    ///     ]),
    ///     vec![],
    /// );
    /// // we use the default [`SpadeTriangulationConfig`] here
    /// let constrained_triangulation = u_shape.constrained_triangulation(Default::default()).unwrap();
    /// let num_triangles = constrained_triangulation.len();
    /// assert_eq!(num_triangles, 6);
    /// ```
    ///
    /// Compared to the `constrained_outer_triangulation` it only includes the triangles
    /// inside of the input geometry
    fn constrained_triangulation(
        &'a self,
        config: SpadeTriangulationConfig<T>,
    ) -> TriangulationResult<Triangles<T>> {
        self.constrained_outer_triangulation(config)
            .map(|triangles| {
                triangles
                    .into_iter()
                    .filter(|triangle| {
                        let center = triangle.centroid();
                        self.contains_point(center)
                    })
                    .collect::<Vec<_>>()
            })
    }
}

/// conversion from spade triangulation back to geo triangles
fn triangulation_to_triangles<T, F>(triangulation: T) -> Triangles<F>
where
    T: Triangulation<Vertex = Point2<F>>,
    F: SpadeTriangulationFloat,
{
    triangulation
        .inner_faces()
        .map(|face| face.positions())
        .map(|points| points.map(|p| Coord::<F> { x: p.x, y: p.y }))
        .map(Triangle::from)
        .collect::<Vec<_>>()
}

// ========== Triangulation trait impls ============

// everything that satisfies the requirement methods automatically implements the triangulation
impl<'a, T, G> TriangulateSpade<'a, T> for G
where
    T: SpadeTriangulationFloat,
    G: private::TriangulationRequirementTrait<'a, T>,
{
}

impl<'a, 'l, T, G> private::TriangulationRequirementTrait<'a, T> for G
where
    'a: 'l,
    T: SpadeTriangulationFloat,
    G: LinesIter<'l, Scalar = T> + CoordsIter<Scalar = T> + Contains<Point<T>>,
{
    fn coords(&'a self) -> private::CoordsIter<T> {
        Box::new(self.coords_iter())
    }

    fn lines(&'a self) -> Vec<Line<T>> {
        self.lines_iter().collect()
    }

    fn contains_point(&'a self, p: Point<T>) -> bool {
        self.contains(&p)
    }
}

// it would be cool to impl the trait for GS: AsRef<[G]> but I wasn't able to get this to compile
// (yet)

impl<'a, T, G> private::TriangulationRequirementTrait<'a, T> for Vec<G>
where
    T: SpadeTriangulationFloat + 'a,
    G: TriangulateSpade<'a, T>,
{
    fn coords(&'a self) -> private::CoordsIter<T> {
        Box::new(self.iter().flat_map(|g| g.coords()))
    }

    fn lines(&'a self) -> Vec<Line<T>> {
        self.iter().flat_map(|g| g.lines()).collect::<Vec<_>>()
    }

    fn contains_point(&'a self, p: Point<T>) -> bool {
        self.iter().any(|g| g.contains_point(p))
    }
}

impl<'a, T, G> private::TriangulationRequirementTrait<'a, T> for &[G]
where
    T: SpadeTriangulationFloat + 'a,
    G: TriangulateSpade<'a, T>,
{
    fn coords(&'a self) -> private::CoordsIter<T> {
        Box::new(self.iter().flat_map(|g| g.coords()))
    }

    fn lines(&'a self) -> Vec<Line<T>> {
        self.iter().flat_map(|g| g.lines()).collect::<Vec<_>>()
    }

    fn contains_point(&'a self, p: Point<T>) -> bool {
        self.iter().any(|g| g.contains_point(p))
    }
}

// ========== Triangulation trait impl helpers ============

fn prepare_intersection_contraint<T: SpadeTriangulationFloat>(
    mut lines: Vec<Line<T>>,
    mut known_points: Vec<Coord<T>>,
    snap_radius: T,
) -> Result<Vec<Line<T>>, TriangulationError> {
    // Rule 2 of "Power of 10" rules (NASA)
    // safety net. We can't prove that the `while let` loop isn't going to run infinitely, so
    // we abort after a fixed amount of iterations. In case that the iteration seems to loop
    // indefinitely this check will return an Error indicating the infinite loop.
    let mut loop_count = 1000;
    let mut loop_check = || {
        loop_count -= 1;
        (loop_count != 0)
            .then_some(())
            .ok_or(TriangulationError::LoopTrap)
    };

    while let Some((indices, intersection)) = {
        let mut iter = iter_line_pairs(&lines);
        iter.find_map(find_intersecting_lines_fn)
    } {
        loop_check()?;
        let [l0, l1] = remove_lines_by_index(indices, &mut lines);
        let new_lines = split_lines([l0, l1], intersection);
        let new_lines = cleanup_filter_lines(new_lines, &lines, &mut known_points, snap_radius);

        lines.extend(new_lines);
    }

    Ok(lines)
}

/// iterates over all combinations (a,b) of lines in a vector where a != b
fn iter_line_pairs<T: SpadeTriangulationFloat>(
    lines: &[Line<T>],
) -> impl Iterator<Item = [(usize, &Line<T>); 2]> {
    lines.iter().enumerate().flat_map(|(idx0, line0)| {
        lines
            .iter()
            .enumerate()
            .filter(move |(idx1, line1)| *idx1 != idx0 && line0 != *line1)
            .map(move |(idx1, line1)| [(idx0, line0), (idx1, line1)])
    })
}

/// checks whether two lines are intersecting and if so, checks the intersection to not be ill
/// formed
///
/// returns
/// - [usize;2] : sorted indexes of lines, smaller one comes first
/// - intersection : type of intersection
fn find_intersecting_lines_fn<T: SpadeTriangulationFloat>(
    [(idx0, line0), (idx1, line1)]: [(usize, &Line<T>); 2],
) -> Option<([usize; 2], LineIntersection<T>)> {
    line_intersection(*line0, *line1)
        .filter(|intersection| {
            match intersection {
                // intersection is not located in both lines
                LineIntersection::SinglePoint { is_proper, .. } if !is_proper => false,
                // collinear intersection is length zero line
                LineIntersection::Collinear { intersection }
                    if intersection.start == intersection.end =>
                {
                    false
                }
                _ => true,
            }
        })
        .map(|intersection| ([idx0, idx1], intersection))
}

/// removes two lines by index in a safe way since the second index can be invalidated after
/// the first line was removed (remember `.remove(idx)` returns the element and shifts the tail
/// of the vector in direction of its start to close the gap)
fn remove_lines_by_index<T: SpadeTriangulationFloat>(
    mut indices: [usize; 2],
    lines: &mut Vec<Line<T>>,
) -> [Line<T>; 2] {
    indices.sort();
    let [idx0, idx1] = indices;
    let l1 = lines.remove(idx1);
    let l0 = lines.remove(idx0);
    [l0, l1]
}

/// split lines based on intersection kind:
///
/// - intersection point: create 4 new lines from the existing line's endpoints to the intersection
/// point
/// - collinear: create 3 new lines (before overlap, overlap, after overlap)
fn split_lines<T: SpadeTriangulationFloat>(
    [l0, l1]: [Line<T>; 2],
    intersection: LineIntersection<T>,
) -> Vec<Line<T>> {
    match intersection {
        LineIntersection::SinglePoint { intersection, .. } => [
            (l0.start, intersection),
            (l0.end, intersection),
            (l1.start, intersection),
            (l1.end, intersection),
        ]
        .map(|(a, b)| Line::new(a, b))
        .to_vec(),
        LineIntersection::Collinear { .. } => {
            let mut points = [l0.start, l0.end, l1.start, l1.end];
            // sort points by their coordinate values to resolve ambiguities
            points.sort_by(|a, b| {
                a.x.partial_cmp(&b.x)
                    .expect("sorting points by coordinate x failed")
                    .then_with(|| {
                        a.y.partial_cmp(&b.y)
                            .expect("sorting points by coordinate y failed")
                    })
            });
            // since all points are on one line we can just create new lines from consecutive
            // points after sorting
            points
                .windows(2)
                .map(|win| Line::new(win[0], win[1]))
                .collect::<Vec<_>>()
        }
    }
}

/// new lines from the `split_lines` function may contain a variety of ill formed lines, this
/// function cleans all of these cases up
fn cleanup_filter_lines<T: SpadeTriangulationFloat>(
    lines_need_check: Vec<Line<T>>,
    existing_lines: &[Line<T>],
    known_points: &mut Vec<Coord<T>>,
    snap_radius: T,
) -> Vec<Line<T>> {
    lines_need_check
        .into_iter()
        .map(|mut line| {
            line.start = snap_or_register_point(line.start, known_points, snap_radius);
            line.end = snap_or_register_point(line.end, known_points, snap_radius);
            line
        })
        .filter(|l| l.start != l.end)
        .filter(|l| !existing_lines.contains(l))
        .filter(|l| !existing_lines.contains(&Line::new(l.end, l.start)))
        .collect::<Vec<_>>()
}

/// snap point to the nearest existing point if it's close enough
///
/// snap_radius can be configured via the third parameter of this function
fn snap_or_register_point<T: SpadeTriangulationFloat>(
    point: Coord<T>,
    known_points: &mut Vec<Coord<T>>,
    snap_radius: T,
) -> Coord<T> {
    known_points
        .iter()
        // find closest
        .min_by(|a, b| {
            a.euclidean_distance(&point)
                .partial_cmp(&b.euclidean_distance(&point))
                .expect("Couldn't compare coordinate distances")
        })
        // only snap if closest is within epsilone range
        .filter(|nearest_point| nearest_point.euclidean_distance(&point) < snap_radius)
        .cloned()
        // otherwise register and use input point
        .unwrap_or_else(|| {
            known_points.push(point);
            point
        })
}

/// preprocesses lines so that we're less likely to hit issues when using the spade triangulation
fn preprocess_lines<T: SpadeTriangulationFloat>(
    lines: Vec<Line<T>>,
    snap_radius: T,
) -> (Vec<Coord<T>>, Vec<Line<T>>) {
    let mut known_coords: Vec<Coord<T>> = vec![];
    let capacity = lines.len();
    let lines = lines
        .into_iter()
        .fold(Vec::with_capacity(capacity), |mut lines, mut line| {
            // deduplicating:

            // 1. snap coords of lines to existing coords
            line.start = snap_or_register_point(line.start, &mut known_coords, snap_radius);
            line.end = snap_or_register_point(line.end, &mut known_coords, snap_radius);
            if
            // 2. make sure line isn't degenerate (no length when start == end)
            line.start != line.end
                // 3. make sure line or flipped line wasn't already added
                && !lines.contains(&line)
                && !lines.contains(&Line::new(line.end, line.start))
            {
                lines.push(line)
            }

            lines
        });
    (known_coords, lines)
}

/// converts Line to something somewhat similar in the spade world
fn to_spade_line<T: SpadeTriangulationFloat>(line: Line<T>) -> [Point2<T>; 2] {
    [to_spade_point(line.start), to_spade_point(line.end)]
}

/// converts Coord to something somewhat similar in the spade world
fn to_spade_point<T: SpadeTriangulationFloat>(coord: Coord<T>) -> Point2<T> {
    Point2::new(coord.x, coord.y)
}

#[cfg(test)]
mod spade_triangulation {
    use super::*;
    use geo_types::*;

    fn assert_num_triangles<T: SpadeTriangulationFloat>(
        triangulation: &TriangulationResult<Triangles<T>>,
        num: usize,
    ) {
        assert_eq!(
            triangulation
                .as_ref()
                .map(|tris| tris.len())
                .expect("triangulation success"),
            num
        )
    }

    #[test]
    fn basic_triangle_triangulates() {
        let triangulation = Triangle::new(
            Coord { x: 0.0, y: 0.0 },
            Coord { x: 1.0, y: 0.0 },
            Coord { x: 0.0, y: 1.0 },
        )
        .unconstrained_triangulation();

        assert_num_triangles(&triangulation, 1);
    }

    #[test]
    fn basic_rectangle_triangulates() {
        let triangulation = Rect::new(Coord { x: 0.0, y: 0.0 }, Coord { x: 1.0, y: 1.0 })
            .unconstrained_triangulation();

        assert_num_triangles(&triangulation, 2);
    }

    #[test]
    fn basic_polygon_triangulates() {
        let triangulation = Polygon::new(
            LineString::new(vec![
                Coord { x: 0.0, y: 1.0 },
                Coord { x: -1.0, y: 0.0 },
                Coord { x: -0.5, y: -1.0 },
                Coord { x: 0.5, y: -1.0 },
                Coord { x: 1.0, y: 0.0 },
            ]),
            vec![],
        )
        .unconstrained_triangulation();

        assert_num_triangles(&triangulation, 3);
    }

    #[test]
    fn overlapping_triangles_triangulate_unconstrained() {
        let triangles = vec![
            Triangle::new(
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 0.0, y: 2.0 },
            ),
            Triangle::new(
                Coord { x: 1.0, y: 1.0 },
                Coord { x: -1.0, y: 1.0 },
                Coord { x: 1.0, y: -1.0 },
            ),
        ];

        let unconstrained_triangulation = triangles.unconstrained_triangulation();
        assert_num_triangles(&unconstrained_triangulation, 4);
    }

    #[test]
    fn overlapping_triangles_triangulate_constrained_outer() {
        let triangles = vec![
            Triangle::new(
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 0.0, y: 2.0 },
            ),
            Triangle::new(
                Coord { x: 1.0, y: 1.0 },
                Coord { x: -1.0, y: 1.0 },
                Coord { x: 1.0, y: -1.0 },
            ),
        ];

        let constrained_outer_triangulation =
            triangles.constrained_outer_triangulation(Default::default());
        assert_num_triangles(&constrained_outer_triangulation, 8);
    }

    #[test]
    fn overlapping_triangles_triangulate_constrained() {
        let triangles = vec![
            Triangle::new(
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 0.0, y: 2.0 },
            ),
            Triangle::new(
                Coord { x: 1.0, y: 1.0 },
                Coord { x: -1.0, y: 1.0 },
                Coord { x: 1.0, y: -1.0 },
            ),
        ];

        let constrained_outer_triangulation =
            triangles.constrained_triangulation(Default::default());
        assert_num_triangles(&constrained_outer_triangulation, 6);
    }

    #[test]
    fn u_shaped_polygon_triangulates_unconstrained() {
        let u_shape = Polygon::new(
            LineString::new(vec![
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 1.0, y: 0.0 },
                Coord { x: 1.0, y: 1.0 },
                Coord { x: 2.0, y: 1.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 3.0, y: 0.0 },
                Coord { x: 3.0, y: 3.0 },
                Coord { x: 0.0, y: 3.0 },
            ]),
            vec![],
        );

        let unconstrained_triangulation = u_shape.unconstrained_triangulation();
        assert_num_triangles(&unconstrained_triangulation, 8);
    }

    #[test]
    fn u_shaped_polygon_triangulates_constrained_outer() {
        let u_shape = Polygon::new(
            LineString::new(vec![
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 1.0, y: 0.0 },
                Coord { x: 1.0, y: 1.0 },
                Coord { x: 2.0, y: 1.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 3.0, y: 0.0 },
                Coord { x: 3.0, y: 3.0 },
                Coord { x: 0.0, y: 3.0 },
            ]),
            vec![],
        );

        let constrained_outer_triangulation =
            u_shape.constrained_outer_triangulation(Default::default());
        assert_num_triangles(&constrained_outer_triangulation, 8);
    }

    #[test]
    fn u_shaped_polygon_triangulates_constrained_inner() {
        let u_shape = Polygon::new(
            LineString::new(vec![
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 1.0, y: 0.0 },
                Coord { x: 1.0, y: 1.0 },
                Coord { x: 2.0, y: 1.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 3.0, y: 0.0 },
                Coord { x: 3.0, y: 3.0 },
                Coord { x: 0.0, y: 3.0 },
            ]),
            vec![],
        );

        let constrained_triangulation = u_shape.constrained_triangulation(Default::default());
        assert_num_triangles(&constrained_triangulation, 6);
    }

    #[test]
    fn various_snap_radius_works() {
        let u_shape = Polygon::new(
            LineString::new(vec![
                Coord { x: 0.0, y: 0.0 },
                Coord { x: 1.0, y: 0.0 },
                Coord { x: 1.0, y: 1.0 },
                Coord { x: 2.0, y: 1.0 },
                Coord { x: 2.0, y: 0.0 },
                Coord { x: 3.0, y: 0.0 },
                Coord { x: 3.0, y: 3.0 },
                Coord { x: 0.0, y: 3.0 },
            ]),
            vec![],
        );

        for snap_with in (1..6).map(|pow| 0.1_f64.powi(pow)) {
            let constrained_triangulation =
                u_shape.constrained_triangulation(SpadeTriangulationConfig {
                    snap_radius: snap_with,
                });
            assert_num_triangles(&constrained_triangulation, 6);
        }
    }
}