1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use num_traits::Float;
use types::{Bbox, Line, LineString, MultiPolygon, Polygon};

use algorithm::winding_order::twice_signed_ring_area;

/// Calculation of the area.

pub trait Area<T>
where
    T: Float,
{
    /// Area of polygon.
    /// See: https://en.wikipedia.org/wiki/Polygon
    ///
    /// ```
    /// use geo::{Coordinate, Point, LineString, Polygon};
    /// use geo::algorithm::area::Area;
    /// let p = |x, y| Point(Coordinate { x: x, y: y });
    /// let v = Vec::new();
    /// let linestring = LineString(vec![p(0., 0.), p(5., 0.), p(5., 6.), p(0., 6.), p(0., 0.)]);
    /// let poly = Polygon::new(linestring, v);
    /// assert_eq!(poly.area(), 30.);
    /// ```
    fn area(&self) -> T;
}

fn get_linestring_area<T>(linestring: &LineString<T>) -> T where T: Float {
    twice_signed_ring_area(linestring) / (T::one() + T::one())
}

impl<T> Area<T> for Line<T>
where
    T: Float,
{
    fn area(&self) -> T {
        T::zero()
    }
}

impl<T> Area<T> for Polygon<T>
where
    T: Float,
{
    fn area(&self) -> T {
        self.interiors
            .iter()
            .fold(get_linestring_area(&self.exterior), |total, next| {
                total - get_linestring_area(next)
            })
    }
}

impl<T> Area<T> for MultiPolygon<T>
where
    T: Float,
{
    fn area(&self) -> T {
        self.0
            .iter()
            .fold(T::zero(), |total, next| {
                total + next.area()
            })
    }
}

impl<T> Area<T> for Bbox<T>
where
    T: Float,
{
    fn area(&self) -> T {
        (self.xmax - self.xmin) * (self.ymax - self.ymin)
    }
}

#[cfg(test)]
mod test {
    use types::{Bbox, Coordinate, Line, LineString, MultiPolygon, Point, Polygon};
    use algorithm::area::Area;

    // Area of the polygon
    #[test]
    fn area_empty_polygon_test() {
        let poly = Polygon::<f64>::new(LineString(Vec::new()), Vec::new());
        assert_relative_eq!(poly.area(), 0.);
    }

    #[test]
    fn area_one_point_polygon_test() {
        let poly = Polygon::new(LineString(vec![Point::new(1., 0.)]), Vec::new());
        assert_relative_eq!(poly.area(), 0.);
    }
    #[test]
    fn area_polygon_test() {
        let p = |x, y| Point(Coordinate { x: x, y: y });
        let linestring = LineString(vec![p(0., 0.), p(5., 0.), p(5., 6.), p(0., 6.), p(0., 0.)]);
        let poly = Polygon::new(linestring, Vec::new());
        assert_relative_eq!(poly.area(), 30.);
    }
    #[test]
    fn bbox_test() {
        let bbox = Bbox {
            xmin: 10.,
            xmax: 20.,
            ymin: 30.,
            ymax: 40.,
        };
        assert_relative_eq!(bbox.area(), 100.);
    }
    #[test]
    fn area_polygon_inner_test() {
        let p = |x, y| Point(Coordinate { x: x, y: y });
        let outer = LineString(vec![
            p(0., 0.),
            p(10., 0.),
            p(10., 10.),
            p(0., 10.),
            p(0., 0.),
        ]);
        let inner0 = LineString(vec![p(1., 1.), p(2., 1.), p(2., 2.), p(1., 2.), p(1., 1.)]);
        let inner1 = LineString(vec![p(5., 5.), p(6., 5.), p(6., 6.), p(5., 6.), p(5., 5.)]);
        let poly = Polygon::new(outer, vec![inner0, inner1]);
        assert_relative_eq!(poly.area(), 98.);
    }
    #[test]
    fn area_multipolygon_test() {
        let p = |x, y| Point(Coordinate { x: x, y: y });
        let poly0 = Polygon::new(
            LineString(vec![
                p(0., 0.),
                p(10., 0.),
                p(10., 10.),
                p(0., 10.),
                p(0., 0.),
            ]),
            Vec::new(),
        );
        let poly1 = Polygon::new(
            LineString(vec![p(1., 1.), p(2., 1.), p(2., 2.), p(1., 2.), p(1., 1.)]),
            Vec::new(),
        );
        let poly2 = Polygon::new(
            LineString(vec![p(5., 5.), p(6., 5.), p(6., 6.), p(5., 6.), p(5., 5.)]),
            Vec::new(),
        );
        let mpoly = MultiPolygon(vec![poly0, poly1, poly2]);
        assert_eq!(mpoly.area(), 102.);
        assert_relative_eq!(mpoly.area(), 102.);
    }
    #[test]
    fn area_line_test() {
        let p = |x, y| Point(Coordinate { x: x, y: y });
        let line1 = Line::new(p(0.0, 0.0), p(1.0, 1.0));
        assert_eq!(line1.area(), 0.);
    }
}