1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
use crate::{Coord, CoordFloat, CoordNum, MapCoords, MapCoordsInPlace};
use std::fmt;

/// Apply an [`AffineTransform`] like [`scale`](AffineTransform::scale),
/// [`skew`](AffineTransform::skew), or [`rotate`](AffineTransform::rotate) to a
/// [`Geometry`](crate::geometry::Geometry).
///
/// Multiple transformations can be composed in order to be efficiently applied in a single
/// operation. See [`AffineTransform`] for more on how to build up a transformation.
///
/// If you are not composing operations, traits that leverage this same machinery exist which might
/// be more readable. See: [`Scale`](crate::algorithm::Scale),
/// [`Translate`](crate::algorithm::Translate), [`Rotate`](crate::algorithm::Rotate),
/// and [`Skew`](crate::algorithm::Skew).
///
/// # Examples
/// ## Build up transforms by beginning with a constructor, then chaining mutation operations
/// ```
/// use geo::{AffineOps, AffineTransform};
/// use geo::{line_string, BoundingRect, Point, LineString};
/// use approx::assert_relative_eq;
///
/// let ls: LineString = line_string![
///     (x: 0.0f64, y: 0.0f64),
///     (x: 0.0f64, y: 10.0f64),
/// ];
/// let center = ls.bounding_rect().unwrap().center();
///
/// let transform = AffineTransform::skew(40.0, 40.0, center).rotated(45.0, center);
///
/// let skewed_rotated = ls.affine_transform(&transform);
///
/// assert_relative_eq!(skewed_rotated, line_string![
///     (x: 0.5688687f64, y: 4.4311312),
///     (x: -0.5688687, y: 5.5688687)
/// ], max_relative = 1.0);
/// ```
pub trait AffineOps<T: CoordNum> {
    /// Apply `transform` immutably, outputting a new geometry.
    #[must_use]
    fn affine_transform(&self, transform: &AffineTransform<T>) -> Self;

    /// Apply `transform` to mutate `self`.
    fn affine_transform_mut(&mut self, transform: &AffineTransform<T>);
}

impl<T: CoordNum, M: MapCoordsInPlace<T> + MapCoords<T, T, Output = Self>> AffineOps<T> for M {
    fn affine_transform(&self, transform: &AffineTransform<T>) -> Self {
        self.map_coords(|c| transform.apply(c))
    }

    fn affine_transform_mut(&mut self, transform: &AffineTransform<T>) {
        self.map_coords_in_place(|c| transform.apply(c))
    }
}

/// A general affine transformation matrix, and associated operations.
///
/// Note that affine ops are **already implemented** on most `geo-types` primitives, using this module.
///
/// Affine transforms using the same numeric type (e.g. [`CoordFloat`](crate::CoordFloat)) can be **composed**,
/// and the result can be applied to geometries using e.g. [`MapCoords`](crate::MapCoords). This allows the
/// efficient application of transforms: an arbitrary number of operations can be chained.
/// These are then composed, producing a final transformation matrix which is applied to the geometry coordinates.
///
/// `AffineTransform` is a row-major matrix.
/// 2D affine transforms require six matrix parameters:
///
/// `[a, b, xoff, d, e, yoff]`
///
/// these map onto the `AffineTransform` rows as follows:
/// ```ignore
/// [[a, b, xoff],
/// [d, e, yoff],
/// [0, 0, 1]]
/// ```
/// The equations for transforming coordinates `(x, y) -> (x', y')` are given as follows:
///
/// `x' = ax + by + xoff`
///
/// `y' = dx + ey + yoff`
///
/// # Usage
///
/// Two types of operation are provided: construction and mutation. **Construction** functions create a *new* transform
/// and are denoted by the use of the **present tense**: `scale()`, `translate()`, `rotate()`, and `skew()`.
///
/// **Mutation** methods *add* a transform to the existing `AffineTransform`, and are denoted by the use of the past participle:
/// `scaled()`, `translated()`, `rotated()`, and `skewed()`.
///
/// # Examples
/// ## Build up transforms by beginning with a constructor, then chaining mutation operations
/// ```
/// use geo::{AffineOps, AffineTransform};
/// use geo::{line_string, BoundingRect, Point, LineString};
/// use approx::assert_relative_eq;
///
/// let ls: LineString = line_string![
///     (x: 0.0f64, y: 0.0f64),
///     (x: 0.0f64, y: 10.0f64),
/// ];
/// let center = ls.bounding_rect().unwrap().center();
///
/// let transform = AffineTransform::skew(40.0, 40.0, center).rotated(45.0, center);
///
/// let skewed_rotated = ls.affine_transform(&transform);
///
/// assert_relative_eq!(skewed_rotated, line_string![
///     (x: 0.5688687f64, y: 4.4311312),
///     (x: -0.5688687, y: 5.5688687)
/// ], max_relative = 1.0);
/// ```
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct AffineTransform<T: CoordNum = f64>([[T; 3]; 3]);

impl<T: CoordNum> Default for AffineTransform<T> {
    fn default() -> Self {
        // identity matrix
        Self::identity()
    }
}

impl<T: CoordNum> AffineTransform<T> {
    /// Create a new affine transformation by composing two `AffineTransform`s.
    ///
    /// This is a **cumulative** operation; the new transform is *added* to the existing transform.
    #[must_use]
    pub fn compose(&self, other: &Self) -> Self {
        // lol
        Self([
            [
                (self.0[0][0] * other.0[0][0])
                    + (self.0[0][1] * other.0[1][0])
                    + (self.0[0][2] * other.0[2][0]),
                (self.0[0][0] * other.0[0][1])
                    + (self.0[0][1] * other.0[1][1])
                    + (self.0[0][2] * other.0[2][1]),
                (self.0[0][0] * other.0[0][2])
                    + (self.0[0][1] * other.0[1][2])
                    + (self.0[0][2] * other.0[2][2]),
            ],
            [
                (self.0[1][0] * other.0[0][0])
                    + (self.0[1][1] * other.0[1][0])
                    + (self.0[1][2] * other.0[2][0]),
                (self.0[1][0] * other.0[0][1])
                    + (self.0[1][1] * other.0[1][1])
                    + (self.0[1][2] * other.0[2][1]),
                (self.0[1][0] * other.0[0][2])
                    + (self.0[1][1] * other.0[1][2])
                    + (self.0[1][2] * other.0[2][2]),
            ],
            [
                // this section isn't technically necessary since the last row is invariant: [0, 0, 1]
                (self.0[2][0] * other.0[0][0])
                    + (self.0[2][1] * other.0[1][0])
                    + (self.0[2][2] * other.0[2][0]),
                (self.0[2][0] * other.0[0][1])
                    + (self.0[2][1] * other.0[1][1])
                    + (self.0[2][2] * other.0[2][1]),
                (self.0[2][0] * other.0[0][2])
                    + (self.0[2][1] * other.0[1][2])
                    + (self.0[2][2] * other.0[2][2]),
            ],
        ])
    }
    /// Create the identity matrix
    ///
    /// The matrix is:
    /// ```ignore
    /// [[1, 0, 0],
    /// [0, 1, 0],
    /// [0, 0, 1]]
    /// ```
    pub fn identity() -> Self {
        Self::new(
            T::one(),
            T::zero(),
            T::zero(),
            T::zero(),
            T::one(),
            T::zero(),
        )
    }

    /// Whether the transformation is equivalent to the [identity matrix](Self::identity),
    /// that is, whether it's application will be a a no-op.
    ///
    /// ```
    /// use geo::AffineTransform;
    /// let mut transform = AffineTransform::identity();
    /// assert!(transform.is_identity());
    ///
    /// // mutate the transform a bit
    /// transform = transform.translated(1.0, 2.0);
    /// assert!(!transform.is_identity());
    ///
    /// // put it back
    /// transform = transform.translated(-1.0, -2.0);
    /// assert!(transform.is_identity());
    /// ```
    pub fn is_identity(&self) -> bool {
        self == &Self::identity()
    }

    /// **Create** a new affine transform for scaling, scaled by factors along the `x` and `y` dimensions.
    /// The point of origin is *usually* given as the 2D bounding box centre of the geometry, but
    /// any coordinate may be specified.
    /// Negative scale factors will mirror or reflect coordinates.
    ///
    /// The matrix is:
    /// ```ignore
    /// [[xfact, 0, xoff],
    /// [0, yfact, yoff],
    /// [0, 0, 1]]
    ///
    /// xoff = origin.x - (origin.x * xfact)
    /// yoff = origin.y - (origin.y * yfact)
    /// ```
    pub fn scale(xfact: T, yfact: T, origin: impl Into<Coord<T>>) -> Self {
        let (x0, y0) = origin.into().x_y();
        let xoff = x0 - (x0 * xfact);
        let yoff = y0 - (y0 * yfact);
        Self::new(xfact, T::zero(), xoff, T::zero(), yfact, yoff)
    }

    /// **Add** an affine transform for scaling, scaled by factors along the `x` and `y` dimensions.
    /// The point of origin is *usually* given as the 2D bounding box centre of the geometry, but
    /// any coordinate may be specified.
    /// Negative scale factors will mirror or reflect coordinates.
    /// This is a **cumulative** operation; the new transform is *added* to the existing transform.
    #[must_use]
    pub fn scaled(mut self, xfact: T, yfact: T, origin: impl Into<Coord<T>>) -> Self {
        self.0 = self.compose(&Self::scale(xfact, yfact, origin)).0;
        self
    }

    /// **Create** an affine transform for translation, shifted by offsets along the `x` and `y` dimensions.
    ///
    /// The matrix is:
    /// ```ignore
    /// [[1, 0, xoff],
    /// [0, 1, yoff],
    /// [0, 0, 1]]
    /// ```
    pub fn translate(xoff: T, yoff: T) -> Self {
        Self::new(T::one(), T::zero(), xoff, T::zero(), T::one(), yoff)
    }

    /// **Add** an affine transform for translation, shifted by offsets along the `x` and `y` dimensions
    ///
    /// This is a **cumulative** operation; the new transform is *added* to the existing transform.
    #[must_use]
    pub fn translated(mut self, xoff: T, yoff: T) -> Self {
        self.0 = self.compose(&Self::translate(xoff, yoff)).0;
        self
    }

    /// Apply the current transform to a coordinate
    pub fn apply(&self, coord: Coord<T>) -> Coord<T> {
        Coord {
            x: (self.0[0][0] * coord.x + self.0[0][1] * coord.y + self.0[0][2]),
            y: (self.0[1][0] * coord.x + self.0[1][1] * coord.y + self.0[1][2]),
        }
    }

    /// Create a new custom transform matrix
    ///
    /// The argument order matches that of the affine transform matrix:
    ///```ignore
    /// [[a, b, xoff],
    /// [d, e, yoff],
    /// [0, 0, 1]] <-- not part of the input arguments
    /// ```
    pub fn new(a: T, b: T, xoff: T, d: T, e: T, yoff: T) -> Self {
        Self([[a, b, xoff], [d, e, yoff], [T::zero(), T::zero(), T::one()]])
    }
}

impl<T: CoordNum> fmt::Debug for AffineTransform<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AffineTransform")
            .field("a", &self.0[0][0])
            .field("b", &self.0[0][1])
            .field("xoff", &self.0[1][2])
            .field("d", &self.0[1][0])
            .field("e", &self.0[1][1])
            .field("yoff", &self.0[1][2])
            .finish()
    }
}

impl<T: CoordNum> From<[T; 6]> for AffineTransform<T> {
    fn from(arr: [T; 6]) -> Self {
        Self::new(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5])
    }
}

impl<T: CoordNum> From<(T, T, T, T, T, T)> for AffineTransform<T> {
    fn from(tup: (T, T, T, T, T, T)) -> Self {
        Self::new(tup.0, tup.1, tup.2, tup.3, tup.4, tup.5)
    }
}

impl<U: CoordFloat> AffineTransform<U> {
    /// **Create** an affine transform for rotation, using an arbitrary point as its centre.
    ///
    /// Note that this operation is only available for geometries with floating point coordinates.
    ///
    /// `angle` is given in **degrees**.
    ///
    /// The matrix (angle denoted as theta) is:
    /// ```ignore
    /// [[cos_theta, -sin_theta, xoff],
    /// [sin_theta, cos_theta, yoff],
    /// [0, 0, 1]]
    ///
    /// xoff = origin.x - (origin.x * cos(theta)) + (origin.y * sin(theta))
    /// yoff = origin.y - (origin.x * sin(theta)) + (origin.y * cos(theta))
    /// ```
    pub fn rotate(degrees: U, origin: impl Into<Coord<U>>) -> Self {
        let (sin_theta, cos_theta) = degrees.to_radians().sin_cos();
        let (x0, y0) = origin.into().x_y();
        let xoff = x0 - (x0 * cos_theta) + (y0 * sin_theta);
        let yoff = y0 - (x0 * sin_theta) - (y0 * cos_theta);
        Self::new(cos_theta, -sin_theta, xoff, sin_theta, cos_theta, yoff)
    }

    /// **Add** an affine transform for rotation, using an arbitrary point as its centre.
    ///
    /// Note that this operation is only available for geometries with floating point coordinates.
    ///
    /// `angle` is given in **degrees**.
    ///
    /// This is a **cumulative** operation; the new transform is *added* to the existing transform.
    #[must_use]
    pub fn rotated(mut self, angle: U, origin: impl Into<Coord<U>>) -> Self {
        self.0 = self.compose(&Self::rotate(angle, origin)).0;
        self
    }

    /// **Create** an affine transform for skewing.
    ///
    /// Note that this operation is only available for geometries with floating point coordinates.
    ///
    /// Geometries are sheared by angles along x (`xs`) and y (`ys`) dimensions.
    /// The point of origin is *usually* given as the 2D bounding box centre of the geometry, but
    /// any coordinate may be specified. Angles are given in **degrees**.
    /// The matrix is:
    /// ```ignore
    /// [[1, tan(x), xoff],
    /// [tan(y), 1, yoff],
    /// [0, 0, 1]]
    ///
    /// xoff = -origin.y * tan(xs)
    /// yoff = -origin.x * tan(ys)
    /// ```
    pub fn skew(xs: U, ys: U, origin: impl Into<Coord<U>>) -> Self {
        let Coord { x: x0, y: y0 } = origin.into();
        let mut tanx = xs.to_radians().tan();
        let mut tany = ys.to_radians().tan();
        // These checks are stolen from Shapely's implementation -- may not be necessary
        if tanx.abs() < U::from::<f64>(2.5e-16).unwrap() {
            tanx = U::zero();
        }
        if tany.abs() < U::from::<f64>(2.5e-16).unwrap() {
            tany = U::zero();
        }
        let xoff = -y0 * tanx;
        let yoff = -x0 * tany;
        Self::new(U::one(), tanx, xoff, tany, U::one(), yoff)
    }

    /// **Add** an affine transform for skewing.
    ///
    /// Note that this operation is only available for geometries with floating point coordinates.
    ///
    /// Geometries are sheared by angles along x (`xs`) and y (`ys`) dimensions.
    /// The point of origin is *usually* given as the 2D bounding box centre of the geometry, but
    /// any coordinate may be specified. Angles are given in **degrees**.
    ///
    /// This is a **cumulative** operation; the new transform is *added* to the existing transform.
    #[must_use]
    pub fn skewed(mut self, xs: U, ys: U, origin: impl Into<Coord<U>>) -> Self {
        self.0 = self.compose(&Self::skew(xs, ys, origin)).0;
        self
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{polygon, Point};

    // given a matrix with the shape
    // [[a, b, xoff],
    // [d, e, yoff],
    // [0, 0, 1]]
    #[test]
    fn matrix_multiply() {
        let a = AffineTransform::new(1, 2, 5, 3, 4, 6);
        let b = AffineTransform::new(7, 8, 11, 9, 10, 12);
        let composed = a.compose(&b);
        assert_eq!(composed.0[0][0], 25);
        assert_eq!(composed.0[0][1], 28);
        assert_eq!(composed.0[0][2], 40);
        assert_eq!(composed.0[1][0], 57);
        assert_eq!(composed.0[1][1], 64);
        assert_eq!(composed.0[1][2], 87);
    }
    #[test]
    fn test_transform_composition() {
        let p0 = Point::new(0.0f64, 0.0);
        // scale once
        let mut scale_a = AffineTransform::default().scaled(2.0, 2.0, p0);
        // rotate
        scale_a = scale_a.rotated(45.0, p0);
        // rotate back
        scale_a = scale_a.rotated(-45.0, p0);
        // scale up again, doubling
        scale_a = scale_a.scaled(2.0, 2.0, p0);
        // scaled once
        let scale_b = AffineTransform::default().scaled(2.0, 2.0, p0);
        // scaled once, but equal to 2 + 2
        let scale_c = AffineTransform::default().scaled(4.0, 4.0, p0);
        assert_ne!(&scale_a.0, &scale_b.0);
        assert_eq!(&scale_a.0, &scale_c.0);
    }

    #[test]
    fn affine_transformed() {
        let transform = AffineTransform::translate(1.0, 1.0).scaled(2.0, 2.0, (0.0, 0.0));
        let mut poly = polygon![(x: 0.0, y: 0.0), (x: 0.0, y: 2.0), (x: 1.0, y: 2.0)];
        poly.affine_transform_mut(&transform);

        let expected = polygon![(x: 1.0, y: 1.0), (x: 1.0, y: 5.0), (x: 3.0, y: 5.0)];
        assert_eq!(expected, poly);
    }
}