1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use crate::{CoordNum, LineString};

use alloc::vec;
use alloc::vec::Vec;
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};
use core::iter::FromIterator;

/// A collection of
/// [`LineString`s](line_string/struct.LineString.html). Can
/// be created from a `Vec` of `LineString`s or from an
/// Iterator which yields `LineString`s. Iterating over this
/// object yields the component `LineString`s.
///
/// # Semantics
///
/// The _boundary_ of a `MultiLineString` is obtained by
/// applying the “mod 2” union rule: A `Point` is in the
/// boundary of a `MultiLineString` if it is in the
/// boundaries of an odd number of elements of the
/// `MultiLineString`.
///
/// The _interior_ of a `MultiLineString` is the union of
/// the interior, and boundary of the constituent
/// `LineString`s, _except_ for the boundary as defined
/// above. In other words, it is the set difference of the
/// boundary from the union of the interior and boundary of
/// the constituents.
///
/// A `MultiLineString` is _simple_ if and only if all of
/// its elements are simple and the only intersections
/// between any two elements occur at `Point`s that are on
/// the boundaries of both elements. A `MultiLineString` is
/// _closed_ if all of its elements are closed. The boundary
/// of a closed `MultiLineString` is always empty.
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MultiLineString<T: CoordNum = f64>(pub Vec<LineString<T>>);

impl<T: CoordNum> MultiLineString<T> {
    /// Instantiate Self from the raw content value
    pub fn new(value: Vec<LineString<T>>) -> Self {
        Self(value)
    }

    /// True if the MultiLineString is empty or if all of its LineStrings are closed - see
    /// [`LineString::is_closed`].
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{MultiLineString, LineString, line_string};
    ///
    /// let open_line_string: LineString<f32> = line_string![(x: 0., y: 0.), (x: 5., y: 0.)];
    /// assert!(!MultiLineString::new(vec![open_line_string.clone()]).is_closed());
    ///
    /// let closed_line_string: LineString<f32> = line_string![(x: 0., y: 0.), (x: 5., y: 0.), (x: 0., y: 0.)];
    /// assert!(MultiLineString::new(vec![closed_line_string.clone()]).is_closed());
    ///
    /// // MultiLineString is not closed if *any* of it's LineStrings are not closed
    /// assert!(!MultiLineString::new(vec![open_line_string, closed_line_string]).is_closed());
    ///
    /// // An empty MultiLineString is closed
    /// assert!(MultiLineString::<f32>::new(vec![]).is_closed());
    /// ```
    pub fn is_closed(&self) -> bool {
        // Note: Unlike JTS et al, we consider an empty MultiLineString as closed.
        self.iter().all(LineString::is_closed)
    }
}

impl<T: CoordNum, ILS: Into<LineString<T>>> From<ILS> for MultiLineString<T> {
    fn from(ls: ILS) -> Self {
        Self(vec![ls.into()])
    }
}

impl<T: CoordNum, ILS: Into<LineString<T>>> FromIterator<ILS> for MultiLineString<T> {
    fn from_iter<I: IntoIterator<Item = ILS>>(iter: I) -> Self {
        Self(iter.into_iter().map(|ls| ls.into()).collect())
    }
}

impl<T: CoordNum> IntoIterator for MultiLineString<T> {
    type Item = LineString<T>;
    type IntoIter = ::alloc::vec::IntoIter<LineString<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a MultiLineString<T> {
    type Item = &'a LineString<T>;
    type IntoIter = ::alloc::slice::Iter<'a, LineString<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (self.0).iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a mut MultiLineString<T> {
    type Item = &'a mut LineString<T>;
    type IntoIter = ::alloc::slice::IterMut<'a, LineString<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (self.0).iter_mut()
    }
}

impl<T: CoordNum> MultiLineString<T> {
    pub fn iter(&self) -> impl Iterator<Item = &LineString<T>> {
        self.0.iter()
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut LineString<T>> {
        self.0.iter_mut()
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for MultiLineString<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{MultiLineString, line_string};
    ///
    /// let a = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10., y: 10.)]]);
    /// let b = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10.01, y: 10.)]]);
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1);
    /// approx::assert_relative_ne!(a, b, max_relative=0.0001);
    /// ```
    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let mut mp_zipper = self.iter().zip(other.iter());
        mp_zipper.all(|(lhs, rhs)| lhs.relative_eq(rhs, epsilon, max_relative))
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> AbsDiffEq for MultiLineString<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum,
    T::Epsilon: Copy,
{
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with an absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{MultiLineString, line_string};
    ///
    /// let a = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10., y: 10.)]]);
    /// let b = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10.01, y: 10.)]]);
    ///
    /// approx::abs_diff_eq!(a, b, epsilon=0.1);
    /// approx::abs_diff_ne!(a, b, epsilon=0.001);
    /// ```
    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let mut mp_zipper = self.into_iter().zip(other.into_iter());
        mp_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(rhs, epsilon))
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::line_string;

    #[test]
    fn test_iter() {
        let multi: Vec<LineString<i32>> = vec![
            line_string![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
            line_string![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
        ];
        let multi: MultiLineString<i32> = MultiLineString::new(multi);

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(
                    p,
                    &line_string![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)]
                );
                first = false;
            } else {
                assert_eq!(
                    p,
                    &line_string![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)]
                );
            }
        }

        // Do it again to prove that `multi` wasn't `moved`.
        first = true;
        for p in &multi {
            if first {
                assert_eq!(
                    p,
                    &line_string![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)]
                );
                first = false;
            } else {
                assert_eq!(
                    p,
                    &line_string![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)]
                );
            }
        }
    }

    #[test]
    fn test_iter_mut() {
        let mut multi = MultiLineString::new(vec![
            line_string![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
            line_string![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
        ]);

        for line_string in &mut multi {
            for coord in line_string {
                coord.x += 1;
                coord.y += 1;
            }
        }

        for line_string in multi.iter_mut() {
            for coord in line_string {
                coord.x += 1;
                coord.y += 1;
            }
        }

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(
                    p,
                    &line_string![(x: 2, y: 2), (x: 4, y: 2), (x: 3, y: 4), (x:2, y:2)]
                );
                first = false;
            } else {
                assert_eq!(
                    p,
                    &line_string![(x: 12, y: 12), (x: 14, y: 12), (x: 13, y: 14), (x:12, y:12)]
                );
            }
        }
    }
}