```  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
```
```#![warn(missing_debug_implementations)]
#![doc(html_logo_url = "https://raw.githubusercontent.com/georust/meta/master/logo/logo.png")]
//! The `geo-types` library provides geospatial primitive types for the [GeoRust] ecosystem.
//!
//! In most cases, you will only need to use this crate if you’re a crate author and want
//! compatibility with other GeoRust crates. Otherwise, the [`geo`](https://crates.io/crates/geo)
//! crate re-exports these types and provides geospatial algorithms.
//!
//! # Types
//!
//! - **[`Coordinate`]**: A two-dimensional coordinate. All geometry types are composed of [`Coordinate`]s, though [`Coordinate`] itself is not a [`Geometry`] type.
//! - **[`Point`]**: A single point represented by one [`Coordinate`]
//! - **[`MultiPoint`]**: A collection of [`Point`]s
//! - **[`Line`]**: A line segment represented by two [`Coordinate`]s
//! - **[`LineString`]**: A series of contiguous line segments represented by two or more
//!   [`Coordinate`]s
//! - **[`MultiLineString`]**: A collection of [`LineString`]s
//! - **[`Polygon`]**: A bounded area represented by one [`LineString`] exterior ring, and zero or
//!   more [`LineString`] interior rings
//! - **[`MultiPolygon`]**: A collection of [`Polygon`]s
//! - **[`Rect`]**: An axis-aligned bounded rectangle represented by minimum and maximum
//!   [`Coordinate`]s
//! - **[`Triangle`]**: A bounded area represented by three [`Coordinate`] vertices
//! - **[`GeometryCollection`]**: A collection of [`Geometry`]s
//! - **[`Geometry`]**: An enumeration of all geometry types, excluding [`Coordinate`]
//!
//! # Semantics
//!
//! The geospatial types provided here aim to adhere to the [OpenGIS Simple feature access][OGC-SFA]
//! standards. Thus, the types here are inter-operable with other implementations of the standards:
//! [JTS], [GEOS], etc.
//!
//! [GeoRust]: https://georust.org
//! [OGC-SFA]: https://www.ogc.org/standards/sfa
//! [JTS]: https://github.com/locationtech/jts
//! [GEOS]: https://trac.osgeo.org/geos
extern crate num_traits;
use num_traits::{Float, Num, NumCast};
use std::fmt::Debug;

#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;

#[cfg(feature = "rstar")]
extern crate rstar;

#[cfg(test)]
#[macro_use]
extern crate approx;

#[deprecated(since = "0.7", note = "use `CoordFloat` or `CoordNum` instead")]
pub trait CoordinateType: Num + Copy + NumCast + PartialOrd + Debug {}
#[allow(deprecated)]
impl<T: Num + Copy + NumCast + PartialOrd + Debug> CoordinateType for T {}

/// The type of an x or y value of a point/coordinate.
///
/// Floats (`f32` and `f64`) and Integers (`u8`, `i32` etc.) implement this.
///
/// For algorithms which only make sense for floating point, like area or length calculations,
/// see [CoordFloat](trait.CoordFloat.html).
#[allow(deprecated)]
pub trait CoordNum: CoordinateType + Debug {}
#[allow(deprecated)]
impl<T: CoordinateType + Debug> CoordNum for T {}

pub trait CoordFloat: CoordNum + Float {}
impl<T: CoordNum + Float> CoordFloat for T {}

mod coordinate;
pub use crate::coordinate::Coordinate;

mod point;
pub use crate::point::Point;

mod multi_point;
pub use crate::multi_point::MultiPoint;

mod line;
pub use crate::line::Line;

mod line_string;
pub use crate::line_string::{LineString, PointsIter};

mod multi_line_string;
pub use crate::multi_line_string::MultiLineString;

mod polygon;
pub use crate::polygon::Polygon;

mod multi_polygon;
pub use crate::multi_polygon::MultiPolygon;

mod geometry;
pub use crate::geometry::Geometry;

mod geometry_collection;
pub use crate::geometry_collection::GeometryCollection;

mod triangle;
pub use crate::triangle::Triangle;

mod rect;
pub use crate::rect::{InvalidRectCoordinatesError, Rect};

#[macro_use]
mod macros;

#[cfg(feature = "rstar")]
#[doc(hidden)]
pub mod private_utils;

#[cfg(test)]
mod tests {
use super::*;
use std::convert::TryFrom;

#[test]
fn type_test() {
let c = Coordinate {
x: 40.02f64,
y: 116.34,
};

let p = Point(c);

let Point(c2) = p;
assert_eq!(c, c2);
assert_relative_eq!(c.x, c2.x);
assert_relative_eq!(c.y, c2.y);

let p: Point<f32> = (0f32, 1f32).into();
assert_relative_eq!(p.x(), 0.);
assert_relative_eq!(p.y(), 1.);
}

#[test]
fn convert_types() {
let p: Point<f32> = Point::new(0., 0.);
let p1 = p.clone();
let g: Geometry<f32> = p.into();
let p2 = Point::try_from(g).unwrap();
assert_eq!(p1, p2);
}

#[test]
fn polygon_new_test() {
let exterior = LineString(vec![
Coordinate { x: 0., y: 0. },
Coordinate { x: 1., y: 1. },
Coordinate { x: 1., y: 0. },
Coordinate { x: 0., y: 0. },
]);
let interiors = vec![LineString(vec![
Coordinate { x: 0.1, y: 0.1 },
Coordinate { x: 0.9, y: 0.9 },
Coordinate { x: 0.9, y: 0.1 },
Coordinate { x: 0.1, y: 0.1 },
])];
let p = Polygon::new(exterior.clone(), interiors.clone());

assert_eq!(p.exterior(), &exterior);
assert_eq!(p.interiors(), &interiors[..]);
}

#[test]
fn iters() {
let _: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into();
let _: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into_iter().collect();

let mut l1: LineString<_> = vec![(0., 0.), (1., 2.)].into();
assert_eq!(l1[1], Coordinate { x: 1., y: 2. }); // index into linestring
let _: LineString<_> = vec![(0., 0.), (1., 2.)].into_iter().collect();

// index mutably into a linestring
l1[0] = Coordinate { x: 1., y: 1. };
assert_eq!(l1, vec![(1., 1.), (1., 2.)].into());
}

#[test]
fn test_coordinate_types() {
let p: Point<u8> = Point::new(0, 0);
assert_eq!(p.x(), 0u8);

let p: Point<i64> = Point::new(1_000_000, 0);
assert_eq!(p.x(), 1_000_000i64);
}

#[cfg(feature = "rstar")]
#[test]
/// ensure Line's SpatialObject impl is correct
fn line_test() {
use rstar::primitives::Line as RStarLine;
use rstar::{PointDistance, RTreeObject};

let rl = RStarLine::new(Point::new(0.0, 0.0), Point::new(5.0, 5.0));
let l = Line::new(Coordinate { x: 0.0, y: 0.0 }, Coordinate { x: 5., y: 5. });
assert_eq!(rl.envelope(), l.envelope());
// difference in 15th decimal place
assert_relative_eq!(26.0, rl.distance_2(&Point::new(4.0, 10.0)));
assert_relative_eq!(25.999999999999996, l.distance_2(&Point::new(4.0, 10.0)));
}

#[test]
fn test_rects() {
let r = Rect::new(Coordinate { x: -1., y: -1. }, Coordinate { x: 1., y: 1. });
let p: Polygon<_> = r.into();
assert_eq!(
p,
Polygon::new(
vec![(-1., -1.), (1., -1.), (1., 1.), (-1., 1.), (-1., -1.)].into(),
vec![]
)
);
}
}
```