1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
use crate::{CoordinateType, Point};
use std::iter::FromIterator;

/// A collection of [`Point`s](struct.Point.html). Can
/// be created from a `Vec` of `Point`s, or from an
/// Iterator which yields `Point`s. Iterating over this
/// object yields the component `Point`s.
///
/// # Semantics
///
/// The _interior_ and the _boundary_ are the union of the
/// interior and the boundary of the constituent points. In
/// particular, the boundary of a `MultiPoint` is always
/// empty.
///
/// # Examples
///
/// Iterating over a `MultiPoint` yields the `Point`s inside.
///
/// ```
/// use geo_types::{MultiPoint, Point};
/// let points: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into();
/// for point in points {
///     println!("Point x = {}, y = {}", point.x(), point.y());
/// }
/// ```
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MultiPoint<T>(pub Vec<Point<T>>)
where
    T: CoordinateType;

impl<T: CoordinateType, IP: Into<Point<T>>> From<IP> for MultiPoint<T> {
    /// Convert a single `Point` (or something which can be converted to a `Point`) into a
    /// one-member `MultiPoint`
    fn from(x: IP) -> MultiPoint<T> {
        MultiPoint(vec![x.into()])
    }
}

impl<T: CoordinateType, IP: Into<Point<T>>> From<Vec<IP>> for MultiPoint<T> {
    /// Convert a `Vec` of `Points` (or `Vec` of things which can be converted to a `Point`) into a
    /// `MultiPoint`.
    fn from(v: Vec<IP>) -> MultiPoint<T> {
        MultiPoint(v.into_iter().map(|p| p.into()).collect())
    }
}

impl<T: CoordinateType, IP: Into<Point<T>>> FromIterator<IP> for MultiPoint<T> {
    /// Collect the results of a `Point` iterator into a `MultiPoint`
    fn from_iter<I: IntoIterator<Item = IP>>(iter: I) -> Self {
        MultiPoint(iter.into_iter().map(|p| p.into()).collect())
    }
}

/// Iterate over the `Point`s in this `MultiPoint`.
impl<T: CoordinateType> IntoIterator for MultiPoint<T> {
    type Item = Point<T>;
    type IntoIter = ::std::vec::IntoIter<Point<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a, T: CoordinateType> IntoIterator for &'a MultiPoint<T> {
    type Item = &'a Point<T>;
    type IntoIter = ::std::slice::Iter<'a, Point<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (&self.0).into_iter()
    }
}

impl<'a, T: CoordinateType> IntoIterator for &'a mut MultiPoint<T> {
    type Item = &'a mut Point<T>;
    type IntoIter = ::std::slice::IterMut<'a, Point<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (&mut self.0).iter_mut()
    }
}

impl<T: CoordinateType> MultiPoint<T> {
    pub fn iter(&self) -> impl Iterator<Item = &Point<T>> {
        self.0.iter()
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Point<T>> {
        self.0.iter_mut()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::point;

    #[test]
    fn test_iter() {
        let multi = MultiPoint(vec![point![x: 0, y: 0], point![x: 10, y: 10]]);

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(p, &point![x: 0, y: 0]);
                first = false;
            } else {
                assert_eq!(p, &point![x: 10, y: 10]);
            }
        }

        // Do it again to prove that `multi` wasn't `moved`.
        first = true;
        for p in &multi {
            if first {
                assert_eq!(p, &point![x: 0, y: 0]);
                first = false;
            } else {
                assert_eq!(p, &point![x: 10, y: 10]);
            }
        }
    }

    #[test]
    fn test_iter_mut() {
        let mut multi = MultiPoint(vec![point![x: 0, y: 0], point![x: 10, y: 10]]);

        for point in &mut multi {
            point.0.x += 1;
            point.0.y += 1;
        }

        for point in multi.iter_mut() {
            point.0.x += 1;
            point.0.y += 1;
        }

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(p, &point![x: 2, y: 2]);
                first = false;
            } else {
                assert_eq!(p, &point![x: 12, y: 12]);
            }
        }
    }
}