1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use std::iter::FromIterator;
use {Coordinate, CoordinateType, Line, Point, Triangle};

/// An ordered collection of two or more [`Coordinate`s](struct.Coordinate.html), representing a
/// path between locations.
///
/// # Examples
///
/// Create a `LineString` by calling it directly:
///
/// ```
/// use geo_types::{LineString, Coordinate};
///
/// let line_string = LineString(vec![
///     Coordinate { x: 0., y: 0. },
///     Coordinate { x: 10., y: 0. },
/// ]);
/// ```
///
/// Converting a `Vec` of `Coordinate`-like things:
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString<f32> = vec![
///     (0., 0.),
///     (10., 0.),
/// ].into();
/// ```
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString<f64> = vec![
///     [0., 0.],
///     [10., 0.],
/// ].into();
/// ```
//
/// Or `collect`ing from a `Coordinate` iterator
///
/// ```
/// use geo_types::{LineString, Coordinate};
///
/// let mut coords_iter = vec![
///     Coordinate { x: 0., y: 0. },
///     Coordinate { x: 10., y: 0. }
/// ].into_iter();
///
/// let line_string: LineString<f32> = coords_iter.collect();
/// ```
///
/// You can iterate over the coordinates in the `LineString`:
///
/// ```
/// use geo_types::{LineString, Coordinate};
///
/// let line_string = LineString(vec![
///     Coordinate { x: 0., y: 0. },
///     Coordinate { x: 10., y: 0. },
/// ]);
///
/// for coord in line_string {
///     println!("Coordinate x = {}, y = {}", coord.x, coord.y);
/// }
/// ```
///
#[derive(PartialEq, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LineString<T>(pub Vec<Coordinate<T>>)
where
    T: CoordinateType;

pub struct PointsIter<'a, T: CoordinateType + 'a>(::std::slice::Iter<'a, Coordinate<T>>);

impl<'a, T: CoordinateType> Iterator for PointsIter<'a, T> {
    type Item = Point<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|c| Point(*c))
    }
}

impl<'a, T: CoordinateType> DoubleEndedIterator for PointsIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|c| Point(*c))
    }
}

impl<T: CoordinateType> LineString<T> {
    pub fn points_iter(&self) -> PointsIter<T> {
        PointsIter(self.0.iter())
    }

    pub fn into_points(self) -> Vec<Point<T>> {
        self.0.into_iter().map(Point).collect()
    }

    /// Return an `Line` iterator that yields one `Line` for each line segment
    /// in the `LineString`.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{Line, LineString, Coordinate};
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    ///
    /// let mut lines = line_string.lines();
    /// assert_eq!(
    ///     Some(Line::new(Coordinate { x: 0., y: 0. }, Coordinate { x: 5., y: 0. })),
    ///     lines.next()
    /// );
    /// assert_eq!(
    ///     Some(Line::new(Coordinate { x: 5., y: 0. }, Coordinate { x: 7., y: 9. })),
    ///     lines.next()
    /// );
    /// assert!(lines.next().is_none());
    /// ```
    pub fn lines<'a>(&'a self) -> impl ExactSizeIterator + Iterator<Item = Line<T>> + 'a {
        self.0.windows(2).map(|w| {
            // slice::windows(N) is guaranteed to yield a slice with exactly N elements
            unsafe { Line::new(*w.get_unchecked(0), *w.get_unchecked(1)) }
        })
    }

    pub fn triangles<'a>(&'a self) -> impl ExactSizeIterator + Iterator<Item = Triangle<T>> + 'a {
        self.0.windows(3).map(|w| {
            // slice::windows(N) is guaranteed to yield a slice with exactly N elements
            unsafe {
                Triangle(
                    *w.get_unchecked(0),
                    *w.get_unchecked(1),
                    *w.get_unchecked(2),
                )
            }
        })
    }
}

/// Turn a `Vec` of `Point`-ish objects into a `LineString`.
impl<T: CoordinateType, IC: Into<Coordinate<T>>> From<Vec<IC>> for LineString<T> {
    fn from(v: Vec<IC>) -> Self {
        LineString(v.into_iter().map(|c| c.into()).collect())
    }
}

/// Turn a `Point`-ish iterator into a `LineString`.
impl<T: CoordinateType, IC: Into<Coordinate<T>>> FromIterator<IC> for LineString<T> {
    fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self {
        LineString(iter.into_iter().map(|c| c.into()).collect())
    }
}

/// Iterate over all the [Coordinate](struct.Coordinates.html)s in this `LineString`.
impl<T: CoordinateType> IntoIterator for LineString<T> {
    type Item = Coordinate<T>;
    type IntoIter = ::std::vec::IntoIter<Coordinate<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

#[cfg(feature = "spade")]
impl<T> ::spade::SpatialObject for LineString<T>
where
    T: ::num_traits::Float + ::spade::SpadeNum + ::std::fmt::Debug,
{
    type Point = Point<T>;

    fn mbr(&self) -> ::spade::BoundingRect<Self::Point> {
        let bounding_rect = ::private_utils::line_string_bounding_rect(self);
        match bounding_rect {
            None => ::spade::BoundingRect::from_corners(
                &Point::new(T::min_value(), T::min_value()),
                &Point::new(T::max_value(), T::max_value()),
            ),
            Some(b) => ::spade::BoundingRect::from_corners(
                &Point::new(b.min.x, b.min.y),
                &Point::new(b.max.x, b.max.y),
            ),
        }
    }

    fn distance2(&self, point: &Self::Point) -> <Self::Point as ::spade::PointN>::Scalar {
        let d = ::private_utils::point_line_string_euclidean_distance(*point, self);
        if d == T::zero() {
            d
        } else {
            d.powi(2)
        }
    }
}