geo_nd/traits.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
/*a Copyright
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
@file vector_op.rs
@brief Part of geometry library
*/
//a Imports
use crate::{quat, vector};
//a Num and Float traits
//tp Num
/// The [Num] trait is required for matrix or vector elements; it is
/// not a float, and so some of the matrix and vector operations can
/// operate on integer types such as i32, i64 and isize
///
/// The trait requires basic numeric operations, plus specifically [std::fmt::Display].
pub trait Num:
std::ops::Neg<Output = Self>
+ num_traits::Num
+ num_traits::NumAssignOps
+ Clone
+ Copy
+ PartialEq
+ std::fmt::Display
+ std::fmt::Debug
{
}
//tp Float
/// The [Float] trait is required for matrix or vector elements which have a float aspect, such as `sqrt`.
///
/// The trait is essentially `num_traits::Float`, but it supplies
/// implicit methods for construction of a [Float] from an `isize`
/// value, or as a rational from a pair of `isize` values.
///
/// As num_traits::Float includes num_traits::NumCast it is not
/// possible to require, as would perhaps be desired, a From<f32>
/// trait, without conflicts occurring.
///
pub trait Float: Num + num_traits::Float {
//fp int
/// Create a [Float] from an `isize` value; this should support
/// constant implementations with no run-time overhead.
#[inline]
fn int(n: isize) -> Self {
Self::from(n).unwrap()
}
//fp frac
/// Create a [Float] as a fraction described by a numerator and
/// denomiator pair of `isize` values; this should support
/// constant implementations with no run-time overhead.
#[inline]
fn frac(n: isize, d: usize) -> Self {
Self::from((n as f32) / (d as f32)).unwrap()
}
//fp pi
/// Return the value of PI
fn pi() -> Self;
//fp tau
/// Return the value of 2*PI
fn tau() -> Self;
}
//ti Num for f32/f64/i32/i64/isize
impl Num for f32 {}
impl Num for f64 {}
impl Num for i32 {}
impl Num for i64 {}
impl Num for isize {}
//ti Float for f32/f64
impl Float for f32 {
#[inline]
fn pi() -> Self {
std::f32::consts::PI
}
#[inline]
fn tau() -> Self {
std::f32::consts::TAU
}
}
impl Float for f64 {
#[inline]
fn pi() -> Self {
std::f64::consts::PI
}
#[inline]
fn tau() -> Self {
std::f64::consts::TAU
}
}
//a Vector, SqMatrix, Quaternion
//tt Vector
/// The [Vector] trait describes an N-dimensional vector of [Float] type.
///
/// Such [Vector]s support basic vector arithmetic using addition and
/// subtraction, and they provide component-wise multiplication and
/// division, using the standard operators on two [Vector]s.
///
/// They also support basic arithmetic to all components of the
/// [Vector] for addition, subtraction, multiplication and division by
/// a scalar [Float] value type that they are comprised of. Hence a
/// `v:Vector<F>` may be scaled by a `s:F` using `v * s`.
///
/// The [Vector] can be indexed only by a `usize`; that is individual
/// components of the vector can be accessed, but ranges may not.
pub trait Vector<F: Float, const D: usize>:
Clone
+ Copy
+ std::fmt::Debug
+ std::fmt::Display
+ std::default::Default
+ std::convert::AsRef<[F; D]>
+ std::convert::AsMut<[F; D]>
+ std::convert::AsRef<[F]>
+ std::convert::AsMut<[F]>
+ std::ops::Index<usize, Output = F>
+ std::ops::IndexMut<usize>
+ std::ops::Neg<Output = Self>
+ std::ops::Add<Self, Output = Self>
+ std::ops::Add<F, Output = Self>
+ std::ops::AddAssign<Self>
+ std::ops::AddAssign<F>
+ std::ops::Sub<Self, Output = Self>
+ std::ops::Sub<F, Output = Self>
+ std::ops::SubAssign<Self>
+ std::ops::SubAssign<F>
+ std::ops::Mul<Self, Output = Self>
+ std::ops::Mul<F, Output = Self>
+ std::ops::MulAssign<Self>
+ std::ops::MulAssign<F>
+ std::ops::Div<Self, Output = Self>
+ std::ops::Div<F, Output = Self>
+ std::ops::DivAssign<Self>
+ std::ops::DivAssign<F>
{
//fp from_array
/// Create a vector from an array of [Float]
#[must_use]
fn from_array(data: [F; D]) -> Self;
//fp zero
/// Create a vector whose elements are all zero
#[must_use]
fn zero() -> Self;
//fp into_array
/// Create a vector from an array of [Float]
#[must_use]
fn into_array(self) -> [F; D];
//mp is_zero
/// Return true if the vector is all zeros
fn is_zero(&self) -> bool;
//mp set_zero
/// Set the vector to be all zeros
fn set_zero(&mut self);
//mp reduce_sum
/// Sum all of the components of the vector
fn reduce_sum(&self) -> F;
//mp mix
/// Create a linear combination of this [Vector] and another using parameter `t` from zero to one
#[must_use]
fn mix(self, other: &Self, t: F) -> Self;
//mp dot
/// Return the dot product of two vectors
fn dot(&self, other: &Self) -> F;
//mp length_sq
/// Return the square of the length of the vector
#[inline]
fn length_sq(&self) -> F {
self.dot(self)
}
//mp length
/// Return the length of the vector
#[inline]
fn length(&self) -> F {
self.length_sq().sqrt()
}
//mp distance_sq
/// Return the square of the distance between this vector and another
#[inline]
fn distance_sq(&self, other: &Self) -> F {
(*self - *other).length_sq()
}
//mp distance
/// Return the distance between this vector and another
#[inline]
fn distance(&self, other: &Self) -> F {
self.distance_sq(other).sqrt()
}
//mp normalize
/// Normalize the vector; if its length is close to zero, then set it to be zero
#[inline]
#[must_use]
fn normalize(mut self) -> Self {
let l = self.length();
if l < F::epsilon() {
self.set_zero()
} else {
self /= l
}
self
}
// clamp
//cp rotate_around
/// Rotate a vector within a plane around a
/// *pivot* point by the specified angle
///
/// The plane of rotation is specified by providing two vector indices for the elements to adjust. For a 2D rotation then the values of c0 and c1 should be 0 and 1.
///
/// For a 3D rotation about the Z axis, they should be 0 and 1; for
/// rotation about the Y axis they should be 2 and 0; and for rotation
/// about the X axis they should be 1 and 2.
///
fn rotate_around(mut self, pivot: &Self, angle: F, c0: usize, c1: usize) -> Self {
let (s, c) = angle.sin_cos();
let dx = self[c0] - pivot[c0];
let dy = self[c1] - pivot[c1];
let x1 = c * dx - s * dy;
let y1 = c * dy + s * dx;
self[c0] = x1 + pivot[c0];
self[c1] = y1 + pivot[c1];
self
}
}
//tt SqMatrix
/// The [SqMatrix] trait describes an N-dimensional square matrix of [Float] type that operates on a [Vector].
///
/// This trait is not stable.
///
/// Such [SqMatrix] support basic arithmetic using addition and
/// subtraction, and they provide component-wise multiplication and
/// division, using the standard operators on two [SqMatrix]s.
///
/// They also support basic arithmetic to all components of the
/// [SqMatrix] for addition, subtraction, multiplication and division by
/// a scalar [Float] value type that they are comprised of. Hence a
/// `m:SqMatrix<F>` may be scaled by a `s:F` using `m * s`.
pub trait SqMatrix<V: Vector<F, D>, F: Float, const D: usize, const D2: usize>:
Clone
+ Copy
+ std::fmt::Debug
+ std::default::Default
+ std::convert::AsRef<[F; D2]>
+ std::convert::AsMut<[F; D2]>
+ std::convert::AsRef<[F]>
+ std::convert::AsMut<[F]>
+ std::ops::Add<Output = Self>
+ std::ops::AddAssign
+ std::ops::Sub<Output = Self>
+ std::ops::SubAssign
+ std::ops::Mul<Output = Self>
+ std::ops::MulAssign
+ std::ops::Mul<F, Output = Self>
+ std::ops::MulAssign<F>
+ std::ops::Div<F, Output = Self>
+ std::ops::DivAssign<F>
{
//fp from_array
/// Create a [SqMatrix] from an array of [Float]s
#[must_use]
fn from_array(data: [F; D2]) -> Self;
//fp into_array
/// Create a vector from an array of [Float]
#[must_use]
fn into_array(self) -> [F; D2];
//fp identity
/// Create an identity [SqMatrix]
#[must_use]
fn identity() -> Self;
//fp zero
/// Create a zero [SqMatrix]
#[must_use]
fn zero() -> Self;
//fp is_zero
/// Return true if the matrix is zer
fn is_zero(&self) -> bool;
//fp set_zero
/// Set the matrix to zero
fn set_zero(&mut self);
// absmax
//mp transpose
/// Return a transpose matrix
fn transpose(&self) -> Self;
//mp determinant
/// Calculate the determinant of the matrix
fn determinant(&self) -> F;
//mp inverse
/// Create an inverse matrix
fn inverse(&self) -> Self;
//mp transform
/// Apply the matrix to a vector to transform it
fn transform(&self, v: &V) -> V;
}
//tt Vector3
/// The [Vector3] trait describes a 3-dimensional vector of [Float]
///
pub trait Vector3<F: Float>: Vector<F, 3> {
/// Cross product of two 3-element vectors
#[must_use]
fn cross_product(&self, other: &Self) -> Self {
Self::from_array(vector::cross_product3(self.as_ref(), other.as_ref()))
}
/// Get a point on a sphere uniformly distributed for a point
/// where x in [0,1) and y in [0,1)
#[must_use]
fn uniform_dist_sphere3(x: [F; 2], map: bool) -> Self {
Self::from_array(vector::uniform_dist_sphere3(x, map))
}
}
//tt SqMatrix3
/// The [SqMatrix3] trait describes a 3-dimensional square matrix of [Float] type that operates on a [Vector].
///
pub trait SqMatrix3<V3: Vector<F, 3>, F: Float>: SqMatrix<V3, F, 3, 9> {
// fn invert(&mut self);
// fn inverse(&self) -> Self;
}
//tt SqMatrix4
/// The [SqMatrix4] trait describes a 4-dimensional square matrix of [Float] type that operates on a [Vector].
///
pub trait SqMatrix4<F: Float, V3: Vector<F, 3>, V4: Vector<F, 4>>: SqMatrix<V4, F, 4, 16> {
// fn invert(&mut self);
// fn inverse(&self) -> Self;
/// Generate a perspective matrix
fn perspective(fov: F, aspect: F, near: F, far: F) -> Self;
/// Generate a matrix that represents a 'look at a vector'
fn look_at(eye: &V3, center: &V3, up: &V3) -> Self;
/// Translate the matrix by a Vec3
fn translate3(&mut self, by: &V3);
/// Translate the matrix by a Vec4
fn translate4(&mut self, by: &V4);
}
//tt Quaternion
/// The [Quaternion] trait describes a 4-dimensional vector of [Float] type.
///
/// Such [Quaternion]s support basic arithmetic using addition and
/// subtraction, and they provide quaternion multiplication and division.
///
/// They also support basic arithmetic to all components of the
/// [Quaternion] for addition, subtraction, multiplication and division by
/// a scalar [Float] value type that they are comprised of. Hence a
/// `q:Quaternion<F>` may be scaled by a `s:F` using `q * s`.
///
/// The [Quaternion] can be indexed only by a `usize`; that is individual
/// components of the vector can be accessed, but ranges may not.
pub trait Quaternion<F, V3, V4> : Clone
+ Copy
+ std::fmt::Debug
+ std::fmt::Display
+ std::default::Default
+ std::convert::AsRef<[F;4]>
+ std::convert::AsMut<[F;4]>
+ std::convert::AsRef<[F]>
+ std::convert::AsMut<[F]>
+ std::ops::Index<usize, Output = F>
+ std::ops::IndexMut<usize>
+ std::ops::Neg<Output = Self>
+ std::ops::Add<Self, Output = Self>
+ std::ops::AddAssign<Self>
+ std::ops::Sub<Self, Output = Self>
+ std::ops::SubAssign<Self>
// scale
+ std::ops::Mul<F, Output = Self>
+ std::ops::MulAssign<F>
+ std::ops::Div<F, Output = Self>
+ std::ops::DivAssign<F>
// apply to self
+ std::ops::Mul<Self, Output = Self>
+ std::ops::MulAssign<Self>
+ std::ops::Div<Self, Output = Self>
+ std::ops::DivAssign<Self>
// apply to V3 - cannot support this as we already have F as RHS of Mul - can only have one trait there
// + std::ops::Mul<V3, Output = V3>
where V3:Vector<F,3>, V4:Vector<F,4>, F:Float
{
//cp from_array
/// Create a quaternion from an array of [Float]
///
/// The order must be [i, j, k, r]
#[must_use]
fn from_array(data:[F;4]) -> Self;
//cp of_rijk
/// Create from r, i, j, k
#[must_use]
fn of_rijk(r:F, i:F, j:F, k:F) -> Self;
//cp conjugate
/// Create the conjugate of a quaternion
#[must_use]
#[inline]
fn conjugate(self) -> Self {
let (r,i,j,k) = self.as_rijk();
Self::of_rijk(r,-i,-j,-k)
}
//cp unit
/// Create a quaternion whose elements are all zero
#[must_use]
fn unit() -> Self;
//cp of_axis_angle
/// Create a unit quaternion for a rotation of an angle about an axis
#[must_use]
fn of_axis_angle(axis:&V3, angle:F) -> Self {
Self::from_array(quat::of_axis_angle(axis.as_ref(), angle))
}
//cp rotate_x
/// Apply a rotation about the X-axis to this quaternion
#[inline]
#[must_use]
fn rotate_x(self, angle: F) -> Self {
Self::from_array(quat::rotate_x(self.as_ref(), angle))
}
//cp rotate_y
/// Apply a rotation about the Y-axis to this quaternion
#[inline]
#[must_use]
fn rotate_y(self, angle: F) -> Self {
Self::from_array(quat::rotate_y(self.as_ref(), angle))
}
//cp rotate_z
/// Apply a rotation about the Z-axis to this quaternion
#[inline]
#[must_use]
fn rotate_z(self, angle: F) -> Self {
Self::from_array(quat::rotate_z(self.as_ref(), angle))
}
//cp of_rotation3
/// Find the unit quaternion of a Matrix3 assuming it is purely a rotation
#[must_use]
fn of_rotation3<M> (rotation:&M) -> Self
where M:SqMatrix<V3, F, 3, 9>;
//cp look_at
/// Create a quaternion that maps a unit V3 of dirn to (0,0,-1) and a unit V3 of up (if perpendicular to dirn) to (0,1,0)
#[must_use]
fn look_at(dirn:&V3, up:&V3) -> Self {
Self::from_array(quat::look_at(dirn.as_ref(), up.as_ref()))
}
//cp rotation_of_vec_to_vec
/// Get a quaternion that is a rotation of one vector to another
///
/// The vectors must be unit vectors
#[must_use]
fn rotation_of_vec_to_vec(a: &V3, b: &V3) -> Self {
Self::from_array(quat::rotation_of_vec_to_vec(a.as_ref(), b.as_ref()))
}
//cp weighted_average_pair
/// Calculate the weighted average of two unit quaternions
///
/// w_a + w_b must be 1.
///
/// See http://www.acsu.buffalo.edu/~johnc/ave_quat07.pdf
/// Averaging Quaternions by F. Landis Markley
#[must_use]
fn weighted_average_pair(&self, w_a: F, qb: &Self, w_b: F) -> Self {
Self::from_array(quat::weighted_average_pair(self.as_ref(), w_a, qb.as_ref(), w_b))
}
//cp weighted_average_many
/// Calculate the weighted average of many unit quaternions
///
/// weights need not add up to 1
///
/// This is an approximation compared to the Landis Markley paper
#[must_use]
fn weighted_average_many<I: Iterator<Item = (F, Self)>>(value_iter:I) -> Self {
let value_iter = value_iter.map(|(w,v)| (w,v.into_array()));
Self::from_array(quat::weighted_average_many(value_iter))
}
//mp into_array
/// Create an array [Float] for the fquaternion in order i, j, k, r
#[must_use]
fn into_array(self) -> [F;4];
//fp as_rijk
/// Break out into r, i, j, k
fn as_rijk(&self) -> (F, F, F, F);
//fp as_axis_angle
/// Find the axis and angle of rotation for a (non-unit) quaternion
fn as_axis_angle(&self) -> (V3, F) {
let (axis, angle) = quat::as_axis_angle(self.as_ref());
(V3::from_array(axis), angle)
}
//mp set_zero
/// Set the quaternion to be all zeros
fn set_zero(&mut self);
//mp mix
/// Create a linear combination of this [Quaternion] and another using parameter `t` from zero to one
#[must_use]
fn mix(self, other:&Self, t:F) -> Self;
//mp dot
/// Return the dot product of two quaternions; basically used for length
#[must_use]
fn dot(self, other:&Self) -> F;
//mp length_sq
/// Return the square of the length of the quaternion
fn length_sq(&self) -> F { self.dot(self) }
//mp length
/// Return the length of the quaternion
fn length(&self) -> F { self.length_sq().sqrt() }
//mp distance_sq
/// Return the square of the distance between this quaternion and another
fn distance_sq(&self, other:&Self) -> F { (*self - *other).length_sq() }
//mp distance
/// Return the distance between this quaternion and another
fn distance(&self, other:&Self) -> F { self.distance_sq(other).sqrt() }
//mp normalize
/// Normalize the quaternion; if its length is close to zero, then set it to be zero
#[must_use]
fn normalize(mut self) -> Self {
let l = self.length();
if l < F::epsilon() {self.set_zero()} else {self /= l}
self
}
//fp set_rotation3
/// Set a Matrix3 to be the rotation matrix corresponding to the unit quaternion
fn set_rotation3<M> (&self, m:&mut M)
where M:SqMatrix<V3, F, 3, 9>;
//fp set_rotation4
/// Set a Matrix4 to be the rotation matrix corresponding to the unit quaternion
fn set_rotation4<M> (&self, m:&mut M)
where M:SqMatrix<V4, F, 4, 16>;
//fp apply3
/// Apply the quaternion to a V3
#[must_use]
fn apply3(self, other: &V3) -> V3 {
let data = quat::apply3(self.as_ref(), other.as_ref());
V3::from_array(data)
}
//fp apply4
/// Apply the quaternion to a V4
#[must_use]
fn apply4(self, other: &V4) -> V4 {
let data = quat::apply4(self.as_ref(), other.as_ref());
V4::from_array(data)
}
//zz All done
}
//tt Transform
/// The [Transform] trait describes a translation, rotation and
/// scaling for 3D, represented eventually as a Mat4
///
/// A transformation that is a translation . scaling . rotation
/// (i.e. it applies the rotation to an object, then scales it, then
/// translates it)
pub trait Transform<F, V3, V4, M4, Q>:
Clone + Copy + std::fmt::Debug + std::fmt::Display + std::default::Default
// + std::ops::Neg<Output = Self>
// apply to self - this is possible
// + std::ops::Mul<Self, Output = Self>
// + std::ops::MulAssign<Self>
// + std::ops::Div<Self, Output = Self>
// + std::ops::DivAssign<Self>
// translation of self - can only choose one of V3 or V4
// + std::ops::Add<V3, Output = Self>
// + std::ops::AddAssign<V3>
// + std::ops::Sub<V3, Output = Self>
// + std::ops::SubAssign<V3>
// + std::ops::Add<V4, Output = Self>
// + std::ops::AddAssign<V4>
// + std::ops::Sub<V4, Output = Self>
// + std::ops::SubAssign<V4>
// scaling
// + std::ops::Mul<F, Output = Self>
// + std::ops::MulAssign<F>
// + std::ops::Div<F, Output = Self>
// + std::ops::DivAssign<F>
// rotation
// + std::ops::Mul<Q, Output = Self>
// + std::ops::MulAssign<Q>
// + std::ops::Div<Q, Output = Self>
// + std::ops::DivAssign<Q>
// and probably where Q:std::ops::Mul<Self, Output=Self> etc
where
F: Float,
V3: Vector<F, 3>,
V4: Vector<F, 4>,
M4: SqMatrix4<F, V3, V4>,
Q: Quaternion<F, V3, V4>,
{
/// Create a transformation that is a translation, rotation and scaling
fn of_trs(t: V3, r: Q, s: F) -> Self;
/// Get the scale of the transform
fn scale(&self) -> F;
/// Get a translation by a vector
fn translation(&self) -> V3;
/// Get the rotation of the transfirnatuib
fn rotation(&self) -> Q;
/// Get the inverse transformation
fn inverse(&self) -> Self;
/// Invert the transformation
fn invert(&mut self);
/// Convert it to a 4-by-4 matrix
fn as_mat(&self) -> M4;
}
//a Vector3D, Geometry3D
//tt Vector3D
/// This is probably a temporary trait used until SIMD supports Geometry3D and Geometry2D
///
/// The [Vector3D] trait describes vectors that may be used for
/// 3D geometry
pub trait Vector3D<Scalar: Float> {
/// The type of a 2D vector
type Vec2: Vector<Scalar, 2>;
/// The type of a 3D vector
type Vec3: Vector<Scalar, 3>;
/// The type of a 3D vector with an additional '1' expected in its extra element
type Vec4: Vector<Scalar, 4>;
}
//tt Geometry3D
/// The [Geometry3D] trait supplies a framework for implementing 3D
/// vector and matrix operations, and should also include the
/// quaternion type.
///
/// An implementation of [Geometry3D] can be used for OpenGL and Vulkan graphics, for example.
pub trait Geometry3D<Scalar: Float> {
/// The type of a 3D vector
type Vec3: Vector<Scalar, 3>;
/// The type of a 3D vector with an additional '1' expected in its extra element if it is a position
type Vec4: Vector<Scalar, 4>;
/// The type of a 3D matrix that can transform Vec3
type Mat3: SqMatrix3<Self::Vec3, Scalar>;
/// The type of a 3D matrix which allows for translations, that can transform Vec4
type Mat4: SqMatrix4<Scalar, Self::Vec3, Self::Vec4>;
/// The quaternion type that provides for rotations in 3D
type Quat: Quaternion<Scalar, Self::Vec3, Self::Vec4>;
/// The transform type
type Trans: Transform<Scalar, Self::Vec3, Self::Vec4, Self::Mat4, Self::Quat>;
// fn of_transform3/4?
// cross_product3
// axis_of_rotation3/4
// clamp
}
//tt Geometry2D
/// This is an experimental trait - it bundles together a Vec2 and a Mat2.
///
/// The [Geometry2D] trait supplies a framework for implementing 2D
/// vector and matrix operations.
pub trait Geometry2D<Scalar: Float> {
/// The type of a 2D vector
type Vec2: Vector<Scalar, 2>;
/// The type of a 2D matrix that can transform a Vec2
type Mat2: SqMatrix<Self::Vec2, Scalar, 2, 4>;
}