1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/*a Copyright

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@file    quaternion_op.rs
@brief   Part of geometry library
 */

//a Imports
use crate::matrix_op as matrix;
use crate::vector_op as vector;
use crate::{Float, Num};

//a Notes on matrices of quaternions
/// 1 - 2*j2 - 2*k2           2*i*j - 2*k*r        2*i*k + 2*j*r
///     2*i*j + 2*k*r     1 - 2*i2 - 2*k2          2*j*k - 2*i*r
///     2*i*k - 2*j*r         2*j*k + 2*i*r    1 - 2*i2 - 2*j2
///
/// m[0] + m[4] + m[9] = 3 - 4(i^2+j^2+k^2) = 3 - 4(1-r^2) = 4r^2 - 1
/// m[7] - m[5] = 4*i*r ( if <0 then i<0 )
/// m[2] - m[6] = 4*j*r ( if <0 then j<0 )
/// m[3] - m[1] = 4*k*r ( if <0 then k<0 )

//a Constructors and destructors
//fp new
/// Create a new quaternion
#[must_use]
#[inline]
pub fn new<V: Num>() -> [V; 4] {
    [V::zero(), V::zero(), V::zero(), V::one()]
}

//fp as_rijk
/// Return the breakdown of a quaternion
#[must_use]
#[inline]
pub fn as_rijk<V: Num>(v: &[V; 4]) -> (V, V, V, V) {
    (v[3], v[0], v[1], v[2])
}

//fp of_rijk
/// Create a quaternion from its components
#[must_use]
#[inline]
pub fn of_rijk<V: Num>(r: V, i: V, j: V, k: V) -> [V; 4] {
    [i, j, k, r]
}

//fp identity
/// Create an identity quaternion
#[must_use]
#[inline]
pub fn identity<V: Num>() -> [V; 4] {
    [V::zero(), V::zero(), V::zero(), V::one()]
}

//fp of_axis_angle
/// Find the quaternion for a rotation of an angle around an axis
#[must_use]
#[inline]
pub fn of_axis_angle<V: Float>(axis: &[V; 3], angle: V) -> [V; 4] {
    let (s, c) = V::sin_cos(angle / V::from(2).unwrap());
    let l = vector::length(axis);
    if l < V::epsilon() {
        identity()
    } else {
        let s = s / l;
        let i = s * axis[0];
        let j = s * axis[1];
        let k = s * axis[2];
        let r = c;
        [i, j, k, r]
    }
}

//fp as_axis_angle
/// Return the axis of the rotation and the angle from the quaternion
#[must_use]
#[inline]
pub fn as_axis_angle<V: Float>(q: &[V; 4]) -> ([V; 3], V) {
    let (r, i, j, k) = as_rijk(q);
    let i2 = i * i;
    let j2 = j * j;
    let k2 = k * k;
    let l = (i2 + j2 + k2).sqrt();
    if l < V::epsilon() {
        ([i, j, k], V::zero())
    } else {
        let rl = V::one() / l;
        ([i * rl, j * rl, k * rl], V::atan2(l, r))
    }
}

//fp to_rotation3
/// Convert a matrix-3 from the quaternion
pub fn to_rotation3<V: Float>(q: &[V; 4], m: &mut [V; 9]) {
    let i2 = q[0] * q[0];
    let j2 = q[1] * q[1];
    let k2 = q[2] * q[2];
    let r2 = q[3] * q[3];

    let l2 = r2 + i2 + j2 + k2;
    let rl2 = V::one() / l2;

    m[0] = (r2 + i2 - j2 - k2) * rl2;
    m[4] = (r2 - i2 + j2 - k2) * rl2;
    m[8] = (r2 - i2 - j2 + k2) * rl2;

    let drl2 = V::frac(2, 1) * rl2;

    m[1] = (q[0] * q[1] - q[2] * q[3]) * drl2;
    m[3] = (q[0] * q[1] + q[2] * q[3]) * drl2;

    m[2] = (q[2] * q[0] + q[1] * q[3]) * drl2;
    m[6] = (q[2] * q[0] - q[1] * q[3]) * drl2;

    m[5] = (q[1] * q[2] - q[0] * q[3]) * drl2;
    m[7] = (q[1] * q[2] + q[0] * q[3]) * drl2;
}

//fp to_rotation4
/// Convert to a matrix-4 from a unit quaternion
pub fn to_rotation4<V: Float>(q: &[V; 4], m: &mut [V; 16]) {
    let i2 = q[0] * q[0];
    let j2 = q[1] * q[1];
    let k2 = q[2] * q[2];
    let r2 = q[3] * q[3];

    let l2 = r2 + i2 + j2 + k2;
    let rl2 = V::one() / l2;

    m[0] = (r2 + i2 - j2 - k2) * rl2;
    m[5] = (r2 - i2 + j2 - k2) * rl2;
    m[10] = (r2 - i2 - j2 + k2) * rl2;

    let drl2 = V::frac(2, 1) * rl2;

    m[1] = (q[0] * q[1] - q[2] * q[3]) * drl2;
    m[4] = (q[0] * q[1] + q[2] * q[3]) * drl2;

    m[2] = (q[2] * q[0] + q[1] * q[3]) * drl2;
    m[8] = (q[2] * q[0] - q[1] * q[3]) * drl2;

    m[6] = (q[1] * q[2] - q[0] * q[3]) * drl2;
    m[9] = (q[1] * q[2] + q[0] * q[3]) * drl2;

    m[3] = V::zero();
    m[7] = V::zero();
    m[11] = V::zero();
    m[12] = V::zero();
    m[13] = V::zero();
    m[14] = V::zero();
    m[15] = V::one();
}

//fp of_rotation
/// Find the quaternion of a Matrix3 assuming it is purely a rotation
#[must_use]
pub fn of_rotation<V: Float>(m: &[V; 9]) -> [V; 4] {
    fn safe_sqrt<V: Float>(x: V) -> V {
        if x < V::zero() {
            V::zero()
        } else {
            x.sqrt()
        }
    }
    let r = safe_sqrt(V::one() + m[0] + m[4] + m[8]) * V::frac(1, 2);
    let mut i = safe_sqrt(V::one() + m[0] - m[4] - m[8]) * V::frac(1, 2);
    let mut j = safe_sqrt(V::one() - m[0] + m[4] - m[8]) * V::frac(1, 2);
    let mut k = safe_sqrt(V::one() - m[0] - m[4] + m[8]) * V::frac(1, 2);

    let r_i_4 = m[7] - m[5];
    let r_j_4 = m[2] - m[6];
    let r_k_4 = m[3] - m[1];
    if r_i_4 < -V::epsilon() {
        i = -i;
    }
    if r_j_4 < -V::epsilon() {
        j = -j;
    }
    if r_k_4 < -V::epsilon() {
        k = -k;
    }

    [i, j, k, r]
}

//fp look_at
/// Create quaternion for a rotation that maps unit dirn to (0,0,-1) and unit up to (0,1,0)
#[must_use]
pub fn look_at<V: Float>(dirn: &[V; 3], up: &[V; 3]) -> [V; 4] {
    let m = matrix::look_at3(dirn, up);
    of_rotation(&m)
}

//a Mapping functions
//cp invert
/// Get the quaternion inverse
#[must_use]
#[inline]
pub fn invert<V: Float>(a: &[V; 4]) -> [V; 4] {
    let l = vector::length_sq(a);
    let r_l = {
        if l < V::epsilon() {
            V::zero()
        } else {
            V::one() / l
        }
    };
    [-a[0] * r_l, -a[1] * r_l, -a[2] * r_l, a[3] * r_l]
}

//cp conjugate
/// Find the conjugate of a quaternion
#[must_use]
#[inline]
pub fn conjugate<V: Num>(a: &[V; 4]) -> [V; 4] {
    [-a[0], -a[1], -a[2], a[3]]
}

//cp normalize
/// Find the conjugate of a quaternion
#[must_use]
#[inline]
pub fn normalize<V: Float>(a: [V; 4]) -> [V; 4] {
    vector::normalize(a)
}

//cp rotate_x
/// Apply a rotation about the X-axis to this quaternion
///
/// Rotation about the X axis is c+i*s
///
/// (c+i*s) * a[] = c*a - s*a[i] + i.s*a[r] - j.s*a[k] + k.s*a[j]
#[must_use]
#[inline]
pub fn rotate_x<V: Float>(a: &[V; 4], angle: V) -> [V; 4] {
    let (s, c) = V::sin_cos(angle / V::from(2).unwrap());
    let i = a[0] * c + a[3] * s;
    let j = a[1] * c + a[2] * s;
    let k = a[2] * c - a[1] * s;
    let r = a[3] * c - a[0] * s;
    [i, j, k, r]
}

//cp rotate_y
/// Apply a rotation about the Y-axis to this quaternion
#[must_use]
#[inline]
pub fn rotate_y<V: Float>(a: &[V; 4], angle: V) -> [V; 4] {
    let (s, c) = V::sin_cos(angle / V::from(2).unwrap());
    let i = a[0] * c - a[2] * s;
    let j = a[1] * c + a[3] * s;
    let k = a[2] * c + a[0] * s;
    let r = a[3] * c - a[1] * s;
    [i, j, k, r]
}

//cp rotate_z
/// Apply a rotation about the Z-axis to this quaternion
#[must_use]
#[inline]
pub fn rotate_z<V: Float>(a: &[V; 4], angle: V) -> [V; 4] {
    let (s, c) = V::sin_cos(angle / V::from(2).unwrap());
    let i = a[0] * c + a[1] * s;
    let j = a[1] * c - a[0] * s;
    let k = a[2] * c + a[3] * s;
    let r = a[3] * c - a[2] * s;
    [i, j, k, r]
}

//cp multiply
/// Multiply two quaternions together
#[must_use]
#[inline]
pub fn multiply<V: Num>(a: &[V; 4], b: &[V; 4]) -> [V; 4] {
    let i = a[0] * b[3] + a[3] * b[0] + a[1] * b[2] - a[2] * b[1];
    let j = a[1] * b[3] + a[3] * b[1] + a[2] * b[0] - a[0] * b[2];
    let k = a[2] * b[3] + a[3] * b[2] + a[0] * b[1] - a[1] * b[0];
    let r = a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2];
    [i, j, k, r]
}

//cp divide
/// Multiply one quaternion by the conjugate of the other / len2 of other
#[must_use]
#[inline]
pub fn divide<V: Float>(a: &[V; 4], b: &[V; 4]) -> [V; 4] {
    let l2 = vector::length_sq(b);
    if l2 < V::epsilon() {
        [V::zero(); 4]
    } else {
        let i = a[0] * b[3] - a[3] * b[0] - a[1] * b[2] + a[2] * b[1];
        let j = a[1] * b[3] - a[3] * b[1] - a[2] * b[0] + a[0] * b[2];
        let k = a[2] * b[3] - a[3] * b[2] - a[0] * b[1] + a[1] * b[0];
        let r = a[3] * b[3] + a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
        [i / l2, j / l2, k / l2, r / l2]
    }
}

//fp nlerp
/// A simple normalized LERP from one quaterion to another (not spherical)
#[must_use]
#[inline]
pub fn nlerp<V: Float>(t: V, in0: &[V; 4], in1: &[V; 4]) -> [V; 4] {
    normalize(vector::mix(in0, in1, t))
}

//a Operational functions
//fp distance_sq
/// Get a measure of the 'distance' between two quaternions
///
/// This is calculated as |a' * b|, where || is the l
///
/// Should this instead be 1 - <a.b>^2 where a.b is the inner product?
#[inline]
pub fn distance_sq<V: Float>(a: &[V; 4], b: &[V; 4]) -> V {
    let qi = invert(a);
    let mut qn = multiply(&qi, b);
    if qn[3] < V::zero() {
        qn[3] += V::one();
    } else {
        qn[3] -= V::one();
    }
    vector::length_sq(&qn)
}

//fp distance
/// Get a measure of the 'distance' between two quaternions
#[inline]
pub fn distance<V: Float>(a: &[V; 4], b: &[V; 4]) -> V {
    distance_sq(a, b).sqrt()
}

//fp to_euler
/// Convert the quaternion to a bank, heading, altitude tuple - applied in that order
#[must_use]
pub fn to_euler<V: Float>(q: &[V; 4]) -> (V, V, V) {
    let i = q[0];
    let j = q[1];
    let k = q[2];
    let r = q[3];
    let test = i * j + r * k;
    let two = V::from(2).unwrap();
    let almost_half = V::from(4_999_999).unwrap() / V::from(10_000_000).unwrap();
    let halfpi = V::zero().acos();
    let (heading, attitude, bank) = {
        if test > almost_half {
            (two * V::atan2(i, r), halfpi, V::zero())
        } else if test < -almost_half {
            (-two * V::atan2(i, r), -halfpi, V::zero())
        } else {
            let i2 = i * i;
            let j2 = j * j;
            let k2 = k * k;
            (
                V::atan2(two * j * r - two * i * k, V::one() - two * j2 - two * k2),
                V::asin(two * test),
                V::atan2(two * i * r - two * j * k, V::one() - two * i2 - two * k2),
            )
        }
    };
    (bank, heading, attitude)
}

//fp apply3
/// Apply the quaternion to a vector3
#[must_use]
pub fn apply3<V: Float>(q: &[V; 4], v: &[V; 3]) -> [V; 3] {
    let (r, i, j, k) = as_rijk(q);
    let two = V::frac(2, 1);
    let x = (r * r + i * i - j * j - k * k) * v[0]
        + two * (i * k + r * j) * v[2]
        + two * (i * j - r * k) * v[1];
    let y = (r * r - i * i + j * j - k * k) * v[1]
        + two * (j * i + r * k) * v[0]
        + two * (j * k - r * i) * v[2];
    let z = (r * r - i * i - j * j + k * k) * v[2]
        + two * (k * j + r * i) * v[1]
        + two * (k * i - r * j) * v[0];
    [x, y, z]
}

//fp apply4
/// Apply the quaternion to a vector3
#[must_use]
pub fn apply4<V: Float>(q: &[V; 4], v: &[V; 4]) -> [V; 4] {
    let (r, i, j, k) = as_rijk(q);
    let two = V::frac(2, 1);
    let x = (r * r + i * i - j * j - k * k) * v[0]
        + two * (i * k + r * j) * v[2]
        + two * (i * j - r * k) * v[1];
    let y = (r * r - i * i + j * j - k * k) * v[1]
        + two * (j * i + r * k) * v[0]
        + two * (j * k - r * i) * v[2];
    let z = (r * r - i * i - j * j + k * k) * v[2]
        + two * (k * j + r * i) * v[1]
        + two * (k * i - r * j) * v[0];
    [x, y, z, v[3]]
}

//fp weighted_average_pair
/// Calculate the weighted average of two unit quaternions
///
/// w_a + w_b must be 1.
///
/// See http://www.acsu.buffalo.edu/~johnc/ave_quat07.pdf
/// Averaging Quaternions by F. Landis Markley
#[must_use]
pub fn weighted_average_pair<V: Float>(qa: &[V; 4], w_a: V, qb: &[V; 4], w_b: V) -> [V; 4] {
    let (ra, ia, ja, ka) = as_rijk(qa);
    let (rb, ib, jb, kb) = as_rijk(qb);
    let four = V::frac(4, 1);
    let w_diff = w_a - w_b;
    let q1_q2 = ra * rb + ia * ib + ja * jb + ka * kb;
    let z_sq = w_diff * w_diff + four * w_a * w_b * q1_q2 * q1_q2;
    let z = z_sq.sqrt();
    let rw_a_sq = w_a * (z + w_diff) / z / (z + w_a + w_b);
    let rw_b_sq = w_b * (z - w_diff) / z / (z + w_a + w_b);
    let rw_a = rw_a_sq.sqrt();
    let rw_b = rw_b_sq.sqrt() * q1_q2.signum();
    of_rijk(
        rw_a * ra + rw_b * rb,
        rw_a * ia + rw_b * ib,
        rw_a * ja + rw_b * jb,
        rw_a * ka + rw_b * kb,
    )
}

//fp weighted_average_many
/// Calculate the weighted average of many unit quaternions
///
/// weights need not add up to 1, but must be nonzero
///
/// This is an approximation compared to the Landis Markley paper
#[must_use]
pub fn weighted_average_many<I: Iterator<Item = (V, [V; 4])>, V: Float>(
    mut values_iter: I,
) -> [V; 4] {
    let (mut weight_ih, mut value_ih) = values_iter
        .next()
        .expect("weighted_average_many MUST be invoked with at least one quaternion");
    let mut next_values = Vec::new();
    loop {
        if let Some((second_weight, second_value)) = values_iter.next() {
            let w12 = weight_ih + second_weight;
            let av = weighted_average_pair(
                &value_ih,
                weight_ih / w12,
                &second_value,
                second_weight / w12,
            );
            next_values.push((w12, av));
        } else {
            // No value to pair with in-hand; if there are none on the
            // list then the iterator only had one entry, so return that
            if next_values.is_empty() {
                return value_ih;
            } else {
                // Iterator must have returned at least 2n+1 (n>=1) entries
                //
                // next_values must be 'n' long already, make it n+1 and break
                next_values.push((weight_ih, value_ih));
                break;
            }
        }
        // In-hand values have been consumed, fill them up or finish
        if let Some((w, v)) = values_iter.next() {
            // Iterator must have returned at least 3 values now
            weight_ih = w;
            value_ih = v;
        } else {
            // Iterator has returned 2n values with n>=1
            break;
        }
    }
    if next_values.len() == 1 {
        next_values[0].1
    } else {
        let values_iter = next_values.into_iter();
        weighted_average_many(values_iter)
    }
}

//fp get_rotation_of_vec_to_vec
/// Get a quaternion that is a rotation of one vector to another
///
/// The vectors must be unit vectors
#[must_use]
pub fn rotation_of_vec_to_vec<V: Float>(a: &[V; 3], b: &[V; 3]) -> [V; 4] {
    let obtuse = vector::dot(a, b) < V::zero();
    let cp = vector::cross_product3(a, b);
    let sa = vector::length(&cp);
    let angle = sa.asin();
    let angle = if obtuse {
        let pi = (-V::one()).acos();
        pi - angle
    } else {
        angle
    };
    of_axis_angle(&cp, angle)
}