1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
use num_traits::Float;

use geo_types::{Coordinate, MultiPolygon, Polygon, Rect};

pub mod compare_segments;
pub mod compute_fields;
mod connect_edges;
mod divide_segment;
pub mod fill_queue;
mod helper;
pub mod possible_intersection;
mod segment_intersection;
mod signed_area;
pub mod subdivide_segments;
pub mod sweep_event;

use self::connect_edges::connect_edges;
use self::fill_queue::fill_queue;
use self::subdivide_segments::subdivide;

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Operation {
    Intersection,
    Difference,
    Union,
    Xor,
}

pub trait BooleanOp<F, Rhs = Self>
where
    F: Float,
{
    fn boolean(&self, rhs: &Rhs, operation: Operation) -> MultiPolygon<F>;

    fn intersection(&self, rhs: &Rhs) -> MultiPolygon<F> {
        self.boolean(rhs, Operation::Intersection)
    }

    fn difference(&self, rhs: &Rhs) -> MultiPolygon<F> {
        self.boolean(rhs, Operation::Difference)
    }

    fn union(&self, rhs: &Rhs) -> MultiPolygon<F> {
        self.boolean(rhs, Operation::Union)
    }

    fn xor(&self, rhs: &Rhs) -> MultiPolygon<F> {
        self.boolean(rhs, Operation::Xor)
    }
}

impl<F> BooleanOp<F> for Polygon<F>
where
    F: Float,
{
    fn boolean(&self, rhs: &Polygon<F>, operation: Operation) -> MultiPolygon<F> {
        boolean_operation(&[self.clone()], &[rhs.clone()], operation)
    }
}

impl<F> BooleanOp<F, MultiPolygon<F>> for Polygon<F>
where
    F: Float,
{
    fn boolean(&self, rhs: &MultiPolygon<F>, operation: Operation) -> MultiPolygon<F> {
        boolean_operation(&[self.clone()], rhs.0.as_slice(), operation)
    }
}

impl<F> BooleanOp<F> for MultiPolygon<F>
where
    F: Float,
{
    fn boolean(&self, rhs: &MultiPolygon<F>, operation: Operation) -> MultiPolygon<F> {
        boolean_operation(self.0.as_slice(), rhs.0.as_slice(), operation)
    }
}

impl<F> BooleanOp<F, Polygon<F>> for MultiPolygon<F>
where
    F: Float,
{
    fn boolean(&self, rhs: &Polygon<F>, operation: Operation) -> MultiPolygon<F> {
        boolean_operation(self.0.as_slice(), &[rhs.clone()], operation)
    }
}

fn boolean_operation<F>(subject: &[Polygon<F>], clipping: &[Polygon<F>], operation: Operation) -> MultiPolygon<F>
where
    F: Float,
{
    let mut sbbox = Rect {
        min: Coordinate {
            x: F::infinity(),
            y: F::infinity(),
        },
        max: Coordinate {
            x: F::neg_infinity(),
            y: F::neg_infinity(),
        },
    };
    let mut cbbox = sbbox;

    let mut event_queue = fill_queue(subject, clipping, &mut sbbox, &mut cbbox, operation);

    if sbbox.min.x > cbbox.max.x || cbbox.min.x > sbbox.max.x || sbbox.min.y > cbbox.max.y || cbbox.min.y > sbbox.max.y
    {
        return trivial_result(subject, clipping, operation);
    }

    let sorted_events = subdivide(&mut event_queue, &sbbox, &cbbox, operation);

    MultiPolygon(connect_edges(&sorted_events, operation))
}

fn trivial_result<F>(subject: &[Polygon<F>], clipping: &[Polygon<F>], operation: Operation) -> MultiPolygon<F>
where
    F: Float,
{
    match operation {
        Operation::Intersection => MultiPolygon(vec![]),
        Operation::Difference => MultiPolygon(Vec::from(subject)),
        Operation::Union | Operation::Xor => MultiPolygon(subject.iter().chain(clipping).cloned().collect()),
    }
}