genzero/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! genzero is a library that lets you get the latest value of a type.
//!
//! ## Why genzero?
//! In concurrent programs, we often want many reader threads to get
//! the latest value from some writer thread (i.e., _single-producer, multi-consumer_, SPMC).
//! A naïve approach would protect shared data with a Mutex or RWLock,
//! but these can reduce throuhgput due to contention and cache line ping-pong.
//!
//! A faster SPMC approach is [RCU](https://en.wikipedia.org/wiki/Read-copy-update).[^1]
//! Initially developed in the Linux kernel, it lets
//! readers locklessly read the latest version *and continue referencing it*
//! without blocking the writer from publishing new versions in the meantime.
//!
//! genzero provides a simple and safe API on top of
//! [crossbeam-epoch](https://docs.rs/crossbeam-epoch/latest/crossbeam_epoch/),
//! an RCU implementation for Rust.
//!
//! ## How do I use use genzero?
//! genzero's API is similar to a `crossbeam::channel` or a `std:sync::mpsc`:
//!
//! ```rust
//! // Start with nothing; you can also provide an initial value with genzero::new()
//! let (mut tx, rx) = genzero::empty();
//! assert_eq!(rx.recv(), None);
//!
//! tx.send(10);
//!
//! assert_eq!(rx.recv(), Some(10));
//!
//! // Once the sender is dropped, the receiver gets None.
//! drop(tx);
//! assert_eq!(rx.recv(), None);
//! ```
//!
//! Due to the magic of ~~garbage collection~~ deferred reclamation,
//! you can also borrow the latest value and hold that reference as long as you want,
//! _completely independent of the sender or receiver's lifetime_.
//!
//! ```rust
//! let (mut tx, rx) = genzero::new(42);
//!
//! let b = rx.borrow().expect("borrow was None");
//! assert_eq!(*b, 42);
//!
//! // Totally safe:
//! drop(tx);
//! assert_eq!(*b, 42);
//!
//! // ...even though new reads give us None:
//! assert_eq!(rx.recv(), None);
//!
//! // Still!
//! drop(rx);
//! assert_eq!(*b, 42);
//! ```
//! [^1]: See the [Linux kernel docs](https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html)
//!       or Fedor Pikus's [CppCon 2017 presentation](https://www.youtube.com/watch?v=rxQ5K9lo034)
//!       to learn more.

use crossbeam::epoch::{pin, Atomic, Guard, Owned, Shared};

use std::sync::atomic::Ordering;
use std::sync::Arc;

/// Updates receivers with the newest value.
pub struct Sender<T> {
    inner_tx: Arc<Atomic<T>>,
}

/// Clones or borrows the newest value from the sender.
#[derive(Clone)]
pub struct Receiver<T> {
    inner_rx: Arc<Atomic<T>>,
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        // Atomically swap the value inside with null.
        let guard = pin();
        let v = self.inner_tx.swap(Shared::null(), Ordering::SeqCst, &guard);
        // If we had a value in there, mark it for deletion
        // as soon as all readers are done with it.
        if !v.is_null() {
            unsafe {
                guard.defer_destroy(v);
            }
        }
        // Optional, but useful since we probably don't drop senders until it's time to go:
        // Flush the thread-local cache of deferred deletes.
        guard.flush();
    }
}

/// Build a new [`Sender`] and [`Receiver`] pair, initialized to `v`.
pub fn new<T>(v: T) -> (Sender<T>, Receiver<T>) {
    let inner = Arc::new(Atomic::new(v));
    let tx = Sender {
        inner_tx: inner.clone(),
    };
    let rx = Receiver { inner_rx: inner };
    (tx, rx)
}

/// Build a new [`Sender`] and [`Receiver`] pair that starts empty.
///
/// Useful for when there's no sane default value.
pub fn empty<T>() -> (Sender<T>, Receiver<T>) {
    let inner = Arc::new(Atomic::null());
    let tx = Sender {
        inner_tx: inner.clone(),
    };
    let rx = Receiver { inner_rx: inner };
    (tx, rx)
}

impl<T> Sender<T> {
    /// Publish a new value to the matching [`Receiver`]s
    pub fn send(&mut self, v: T) {
        let guard = pin();
        let prev = self.inner_tx.swap(Owned::new(v), Ordering::Release, &guard);
        if !prev.is_null() {
            unsafe {
                guard.defer_destroy(prev);
            }
        }
    }
}

/// A reference to the current value, as of the time it was returend from [`Receiver::borrow()`].
///
/// Can outlive both sender and receiver!
pub struct Borrow<T> {
    _guard: Guard,
    // Ideally this would be a Shared,
    // but that depends on the lifetime of the guard, and Rust doesn't like self-reference.
    // SAFETY: the pointer is valid so long as we have the guard (i.e., epoch) we loaded it from.
    shared: *const T,
}

impl<T> std::ops::Deref for Borrow<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: the pointer is valid so long as we hold the guard.
        // Invariant: We don't make a Borrow pointing to null.
        unsafe { self.shared.as_ref().unwrap() }
    }
}

impl<T> Receiver<T> {
    /// Borrows the current value for as long as you want.
    ///
    /// Just because you *can* hold onto this borrow indefinitely dones't mean you should.
    /// The [`Sender`] is presumably publishing new versions, making it increasingly stale!
    pub fn borrow(&self) -> Option<Borrow<T>> {
        let guard = pin();
        let shared = self.inner_rx.load_consume(&guard).as_raw(); // This one's for Paul.
        if shared.is_null() {
            None
        } else {
            Some(Borrow {
                _guard: guard,
                shared,
            })
        }
    }
}

impl<T: Clone> Receiver<T> {
    /// Clones the current value.
    ///
    /// If cloning isn't cheap (or possible!) consider [`borrow()`](Receiver::borrow)
    pub fn recv(&self) -> Option<T> {
        let guard = pin();
        let v = self.inner_rx.load_consume(&guard); // memory_order_consume lives!
        let inner_ref = unsafe { v.as_ref() };
        match inner_ref {
            Some(b) => Some(b.clone()),
            None => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::Rng;

    #[test]
    fn single_thread_reader_writer() {
        let (mut tx, rx) = new::<u32>(8);

        assert_eq!(rx.recv(), Some(8));

        tx.send(10);
        assert_eq!(rx.recv(), Some(10));
    }

    #[test]
    fn empty_after_drop() {
        let (tx, rx) = new::<u32>(42);
        assert_eq!(rx.recv(), Some(42));
        drop(tx);
        assert_eq!(rx.recv(), None);
    }

    #[test]
    fn borrow_after_drop() {
        let (tx, rx) = new::<u32>(42);
        let b = match rx.borrow() {
            Some(s) => s,
            None => panic!("Empty borrow after init"),
        };

        drop(tx);
        assert_eq!(rx.recv(), None);

        // So long as we hold the pin, nothing bad happens.
        // Once the pin is pulled, Mr. Grenade is not your friend.
        assert_eq!(*b, 42);
    }

    #[test]
    fn one_writer_one_reader_random_waits() {
        let (mut tx, rx) = new::<u32>(0);

        let t = std::thread::spawn(move || {
            let mut count = 0;
            let ten_millis = std::time::Duration::from_millis(10);

            for _n in 0..50 {
                count = count + 1;
                tx.send(count);
                std::thread::sleep(ten_millis);
            }
        });

        let mut rng = rand::thread_rng();

        loop {
            let v = rx.recv();
            if v == Some(50) || v == None {
                break;
            }
            let wait_time: u64 = rng.gen_range(0..50);
            let rand_millis = std::time::Duration::from_millis(wait_time);
            std::thread::sleep(rand_millis);
        }

        t.join().expect("writer didn't close cleanly");
    }

    #[test]
    fn one_writer_one_reader_borrows() {
        let (mut tx, rx) = new::<u32>(0);

        let t = std::thread::spawn(move || {
            let mut count = 0;
            let ten_millis = std::time::Duration::from_millis(10);

            for _n in 0..50 {
                count = count + 1;
                tx.send(count);
                std::thread::sleep(ten_millis);
            }
        });

        let mut rng = rand::thread_rng();

        loop {
            match rx.borrow() {
                Some(b) if *b == 50 => break,
                None => break,
                _ => (),
            }
            let wait_time: u64 = rng.gen_range(0..50);
            let rand_millis = std::time::Duration::from_millis(wait_time);
            std::thread::sleep(rand_millis);
        }

        t.join().expect("writer didn't close cleanly");
    }
}