1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//! The `proportionate` module provides `operator::SelectionOp`s that implement
//! stochastic fitness proportionate selection strategies. Individuals are
//! randomly selected. Individuals with a higher `genetic::Fitness` value are
//! having a higher probability to be selected.
//!
//! How is this achieved?
//! In fitness proportionate selection each individual gets assigned a weight
//! that is equal to its fitness value plus the sum of fitness values of all
//! individuals in the list before him (cumulative weight distribution). Then
//! a uniform random number between 0 and the sum of all weights is used to
//! select a candidate.
//!
//! The provided **fitness proportionate selection** operators are:
//! * `RouletteWheelSelector` - no bias - does not guarantee minimal spread.
//! * `UniversalSamplingSelector` - no bias - minimal spread.

use crate::{
    algorithm::EvaluatedPopulation,
    genetic::{AsScalar, Fitness, Genotype, Parents},
    operator::{GeneticOperator, SelectionOp, SingleObjective},
    random::{random_probability, Rng, WeightedDistribution},
};

/// The `RouletteWheelSelector` implements stochastic fitness proportionate
/// selection. Each candidate is picked randomly with a probability of being
/// picked that is proportional to its fitness value.
///
/// Characteristics: no bias, does not guarantee minimal spread.
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug, PartialEq)]
pub struct RouletteWheelSelector {
    /// The fraction of number of parents to select in relation to the
    /// number of individuals in the population.
    selection_ratio: f64,
    /// The number of individuals per parents.
    num_individuals_per_parents: usize,
}

impl RouletteWheelSelector {
    /// Constructs a new instance of `RouletteWheelSelector`.
    pub fn new(selection_ratio: f64, num_individuals_per_parents: usize) -> Self {
        RouletteWheelSelector {
            selection_ratio,
            num_individuals_per_parents,
        }
    }

    /// Returns the selection ratio.
    ///
    /// The selection ratio is the fraction of number of parents that are
    /// selected on every call of the `select_from` function and the number
    /// of individuals in the population.
    pub fn selection_ratio(&self) -> f64 {
        self.selection_ratio
    }

    /// Sets the selection ratio to a new value.
    ///
    /// The selection ratio is the fraction of number of parents that are
    /// selected on every call of the `select_from` function and the number
    /// of individuals in the population.
    pub fn set_selection_ratio(&mut self, value: f64) {
        self.selection_ratio = value;
    }

    /// Returns the number of individuals per parents use by this selector.
    pub fn num_individuals_per_parents(&self) -> usize {
        self.num_individuals_per_parents
    }

    /// Sets the number of individuals per parents to the given value.
    pub fn set_num_individuals_per_parents(&mut self, value: usize) {
        self.num_individuals_per_parents = value;
    }
}

impl SingleObjective for RouletteWheelSelector {}

impl GeneticOperator for RouletteWheelSelector {
    fn name() -> String {
        "Roulette-Wheel-Selection".to_string()
    }
}

impl<G, F> SelectionOp<G, F> for RouletteWheelSelector
where
    G: Genotype,
    F: Fitness + AsScalar,
{
    fn select_from<R>(&self, evaluated: &EvaluatedPopulation<G, F>, rng: &mut R) -> Vec<Parents<G>>
    where
        R: Rng + Sized,
    {
        let individuals = evaluated.individuals();
        let num_parents_to_select =
            (individuals.len() as f64 * self.selection_ratio + 0.5).floor() as usize;
        let mut parents = Vec::with_capacity(num_parents_to_select);
        let weighted_distribution =
            WeightedDistribution::from_scalar_values(evaluated.fitness_values());
        for _ in 0..num_parents_to_select {
            let mut tuple = Vec::with_capacity(self.num_individuals_per_parents);
            for _ in 0..self.num_individuals_per_parents {
                let random = random_probability(rng) * weighted_distribution.sum();
                let selected = weighted_distribution.select(random);
                tuple.push(individuals[selected].clone());
            }
            parents.push(tuple);
        }
        parents
    }
}

/// The `UniversalSamplingSelector` implements stochastic fitness proportionate
/// selection. The first candidate is picked randomly. All other candidates are
/// picked by equidistant jumps.
///
/// Characteristics: no bias, minimal spread.
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug, PartialEq)]
pub struct UniversalSamplingSelector {
    /// The fraction of number of parents to select in relation to the
    /// number of individuals in the population.
    selection_ratio: f64,
    /// The number of individuals per parents.
    num_individuals_per_parents: usize,
}

impl UniversalSamplingSelector {
    /// Constructs a new instance of `UniversalSamplingSelector`.
    pub fn new(selection_ratio: f64, num_individuals_per_parents: usize) -> Self {
        UniversalSamplingSelector {
            selection_ratio,
            num_individuals_per_parents,
        }
    }

    /// Returns the selection ratio.
    ///
    /// The selection ratio is the fraction of number of parents that are
    /// selected on every call of the `select_from` function and the number
    /// of individuals in the population.
    pub fn selection_ratio(&self) -> f64 {
        self.selection_ratio
    }

    /// Sets the selection ratio to a new value.
    ///
    /// The selection ratio is the fraction of number of parents that are
    /// selected on every call of the `select_from` function and the number
    /// of individuals in the population.
    pub fn set_selection_ratio(&mut self, value: f64) {
        self.selection_ratio = value;
    }

    /// Returns the number of individuals per parents use by this selector.
    pub fn num_individuals_per_parents(&self) -> usize {
        self.num_individuals_per_parents
    }

    /// Sets the number of individuals per parents to the given value.
    pub fn set_num_individuals_per_parents(&mut self, value: usize) {
        self.num_individuals_per_parents = value;
    }
}

impl SingleObjective for UniversalSamplingSelector {}

impl GeneticOperator for UniversalSamplingSelector {
    fn name() -> String {
        "Stochastic-Universal-Sampling-Selection".to_string()
    }
}

impl<G, F> SelectionOp<G, F> for UniversalSamplingSelector
where
    G: Genotype,
    F: Fitness + AsScalar,
{
    fn select_from<R>(&self, evaluated: &EvaluatedPopulation<G, F>, rng: &mut R) -> Vec<Parents<G>>
    where
        R: Rng + Sized,
    {
        let individuals = evaluated.individuals();
        let num_parents_to_select =
            (individuals.len() as f64 * self.selection_ratio + 0.5).floor() as usize;
        let mut parents = Vec::with_capacity(num_parents_to_select);
        let weighted_distribution =
            WeightedDistribution::from_scalar_values(evaluated.fitness_values());
        let distance = weighted_distribution.sum()
            / (num_parents_to_select * self.num_individuals_per_parents) as f64;
        let mut pointer = random_probability(rng) * weighted_distribution.sum();
        for _ in 0..num_parents_to_select {
            let mut tuple = Vec::with_capacity(self.num_individuals_per_parents);
            for _ in 0..self.num_individuals_per_parents {
                let selected = weighted_distribution.select(pointer);
                tuple.push(individuals[selected].clone());
                pointer += distance;
            }
            parents.push(tuple);
        }
        parents
    }
}