1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//! This module provides an `algorithm::Algorithm` which implements the genetic
//! algorithm (GA).
//!
//! The stages of the basic genetic algorithm are:
//!
//! 1. **Initialize**: Generate random population of n genotypes (or chromosomes)
//! 2. **Fitness**: Evaluate the fitness of each genotype in the population
//! 3. **New Population**: Create a new population by repeating following steps
//!    until the new population is complete:
//! 3.1. **Selection**: Select a tuple of parent genotypes from a population
//!      according to their fitness and the selection strategy of the
//!      configured `operator::SelectionOp`
//! 3.2. **Crossover**: With a crossover probability cross over the parents to
//!      form a new offspring (child) by means of the configured
//!      `operator::CrossoverOp`.
//! 3.3. **Mutation**: With a mutation probability mutate new offspring at each
//!      locus (position in genotype) by means of the configured
//!      `operator::MutationOp`.
//! 3.4. **Accepting**: Place new offspring in the new population.
//! 4. **Replace**: Use new generated population for a further run of the
//!    algorithm.
//! 5. **Termination**: If the end condition is satisfied, stop, and return the
//!    best solution in current population.
//! 6. **Loop**: Go to step 2

pub mod builder;

use self::builder::EmptyGeneticAlgorithmBuilder;
use crate::{
    algorithm::{Algorithm, BestSolution, EvaluatedPopulation},
    genetic::{Fitness, FitnessFunction, Genotype, Offspring, Parents},
    operator::{CrossoverOp, MutationOp, ReinsertionOp, SelectionOp},
    population::Population,
    random::Prng,
    statistic::{timed, ProcessingTime, TimedResult, TrackProcessingTime},
};
use chrono::Local;
#[cfg(not(target_arch = "wasm32"))]
use rayon;
use std::{
    fmt::{self, Display},
    marker::PhantomData,
    rc::Rc,
};

/// The `State` struct holds the results of one pass of the genetic algorithm
/// loop, i.e. the processing of the evolution from one generation to the next
/// generation.
#[derive(Clone, Debug, PartialEq)]
pub struct State<G, F>
where
    G: Genotype,
    F: Fitness,
{
    /// The evaluated population of the current generation.
    pub evaluated_population: EvaluatedPopulation<G, F>,
    /// Best solution of this generation.
    pub best_solution: BestSolution<G, F>,
    /// Processing time for this generation. In case of parallel processing it
    /// is the accumulated time spent by each thread.
    pub processing_time: ProcessingTime,
}

/// An error that can occur during execution of a `GeneticAlgorithm`.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum GeneticAlgorithmError {
    /// The algorithm is run with an empty population.
    EmptyPopulation(String),
    /// The algorithm is run with an population size that is smaller than the
    /// required minimum.
    PopulationTooSmall(String),
}

impl Display for GeneticAlgorithmError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            GeneticAlgorithmError::EmptyPopulation(details) => write!(f, "{}", details),
            GeneticAlgorithmError::PopulationTooSmall(details) => write!(f, "{}", details),
        }
    }
}

impl std::error::Error for GeneticAlgorithmError {}

pub fn genetic_algorithm<G, F>() -> EmptyGeneticAlgorithmBuilder<G, F>
where
    G: Genotype,
    F: Fitness,
{
    EmptyGeneticAlgorithmBuilder::new()
}

/// A `GeneticAlgorithm` declares the building blocks that make up the actual
/// algorithm for a specific optimization problem.
#[derive(Clone, Debug, PartialEq)]
pub struct GeneticAlgorithm<G, F, E, S, C, M, R>
where
    G: Genotype,
    F: Fitness,
    E: FitnessFunction<G, F>,
    S: SelectionOp<G, F>,
    C: CrossoverOp<G>,
    M: MutationOp<G>,
    R: ReinsertionOp<G, F>,
{
    _f: PhantomData<F>,
    evaluator: E,
    selector: S,
    breeder: C,
    mutator: M,
    reinserter: R,
    min_population_size: usize,
    initial_population: Population<G>,
    population: Rc<Vec<G>>,
    processing_time: ProcessingTime,
}

impl<G, F, E, S, C, M, R> GeneticAlgorithm<G, F, E, S, C, M, R>
where
    G: Genotype,
    F: Fitness,
    E: FitnessFunction<G, F>,
    S: SelectionOp<G, F>,
    C: CrossoverOp<G>,
    M: MutationOp<G>,
    R: ReinsertionOp<G, F>,
{
    pub fn evaluator(&self) -> &E {
        &self.evaluator
    }

    pub fn selector(&self) -> &S {
        &self.selector
    }

    pub fn breeder(&self) -> &C {
        &self.breeder
    }

    pub fn mutator(&self) -> &M {
        &self.mutator
    }

    pub fn reinserter(&self) -> &R {
        &self.reinserter
    }

    pub fn min_population_size(&self) -> usize {
        self.min_population_size
    }
}

impl<G, F, E, S, C, M, R> TrackProcessingTime for GeneticAlgorithm<G, F, E, S, C, M, R>
where
    G: Genotype,
    F: Fitness,
    E: FitnessFunction<G, F>,
    S: SelectionOp<G, F>,
    C: CrossoverOp<G>,
    M: MutationOp<G>,
    R: ReinsertionOp<G, F>,
{
    fn processing_time(&self) -> ProcessingTime {
        self.processing_time
    }
}

impl<G, F, E, S, C, M, R> Algorithm for GeneticAlgorithm<G, F, E, S, C, M, R>
where
    G: Genotype,
    F: Fitness + Send + Sync,
    E: FitnessFunction<G, F> + Sync,
    S: SelectionOp<G, F>,
    C: CrossoverOp<G> + Sync,
    M: MutationOp<G> + Sync,
    R: ReinsertionOp<G, F>,
{
    type Output = State<G, F>;
    type Error = GeneticAlgorithmError;

    fn next(&mut self, iteration: u64, rng: &mut Prng) -> Result<Self::Output, Self::Error> {
        if self.population.is_empty() {
            return Err(GeneticAlgorithmError::EmptyPopulation(format!(
                "Population of generation {} is empty. The required minimum size for \
                 populations is {}.",
                iteration, self.min_population_size
            )));
        }
        if self.population.len() < self.min_population_size {
            return Err(GeneticAlgorithmError::PopulationTooSmall(format!(
                "Population of generation {} has a size of {} which is smaller than the \
                 required minimum size of {}",
                iteration,
                self.population.len(),
                self.min_population_size
            )));
        }

        // Stage 2: The fitness check:
        let evaluation = evaluate_fitness(self.population.clone(), &self.evaluator);
        let best_solution = determine_best_solution(iteration, &evaluation.result);

        // Stage 3: The making of a new population:
        let selection = timed(|| self.selector.select_from(&evaluation.result, rng)).run();
        let mut breeding = par_breed_offspring(selection.result, &self.breeder, &self.mutator, rng);
        let reinsertion = timed(|| {
            self.reinserter
                .combine(&mut breeding.result, &evaluation.result, rng)
        })
        .run();

        // Stage 4: On to the next generation:
        self.processing_time = evaluation.time
            + best_solution.time
            + selection.time
            + breeding.time
            + reinsertion.time;
        let next_generation = reinsertion.result;
        self.population = Rc::new(next_generation);
        Ok(State {
            evaluated_population: evaluation.result,
            best_solution: best_solution.result,
            processing_time: self.processing_time,
        })
    }

    fn reset(&mut self) -> Result<bool, Self::Error> {
        self.processing_time = ProcessingTime::zero();
        self.population = Rc::new(self.initial_population.individuals().to_vec());
        Ok(true)
    }
}

fn evaluate_fitness<G, F, E>(
    population: Rc<Vec<G>>,
    evaluator: &E,
) -> TimedResult<EvaluatedPopulation<G, F>>
where
    G: Genotype + Sync,
    F: Fitness + Send + Sync,
    E: FitnessFunction<G, F> + Sync,
{
    let evaluation = par_evaluate_fitness(&population, evaluator);
    let average = timed(|| evaluator.average(&evaluation.result.0)).run();
    let evaluated = EvaluatedPopulation::new(
        population,
        evaluation.result.0,
        evaluation.result.1,
        evaluation.result.2,
        average.result,
    );
    TimedResult {
        result: evaluated,
        time: evaluation.time + average.time,
    }
}

/// Calculates the `genetic::Fitness` value of each `genetic::Genotype` and
/// records the highest and lowest values.
#[cfg(not(target_arch = "wasm32"))]
fn par_evaluate_fitness<G, F, E>(population: &[G], evaluator: &E) -> TimedResult<(Vec<F>, F, F)>
where
    G: Genotype + Sync,
    F: Fitness + Send + Sync,
    E: FitnessFunction<G, F> + Sync,
{
    if population.len() < 50 {
        timed(|| {
            let mut fitness = Vec::with_capacity(population.len());
            let mut highest = evaluator.lowest_possible_fitness();
            let mut lowest = evaluator.highest_possible_fitness();
            for genome in population.iter() {
                let score = evaluator.fitness_of(genome);
                if score > highest {
                    highest = score.clone();
                }
                if score < lowest {
                    lowest = score.clone();
                }
                fitness.push(score);
            }
            (fitness, highest, lowest)
        })
        .run()
    } else {
        let mid_point = population.len() / 2;
        let (l_slice, r_slice) = population.split_at(mid_point);
        let (mut left, mut right) = rayon::join(
            || par_evaluate_fitness(l_slice, evaluator),
            || par_evaluate_fitness(r_slice, evaluator),
        );
        let mut fitness = Vec::with_capacity(population.len());
        fitness.append(&mut left.result.0);
        fitness.append(&mut right.result.0);
        let highest = if left.result.1 >= right.result.1 {
            left.result.1
        } else {
            right.result.1
        };
        let lowest = if left.result.2 <= right.result.2 {
            left.result.2
        } else {
            right.result.2
        };
        TimedResult {
            result: (fitness, highest, lowest),
            time: left.time + right.time,
        }
    }
}

#[cfg(target_arch = "wasm32")]
fn par_evaluate_fitness<G, F, E>(population: &[G], evaluator: &E) -> TimedResult<(Vec<F>, F, F)>
where
    G: Genotype + Sync,
    F: Fitness + Send + Sync,
    E: FitnessFunction<G, F> + Sync,
{
    timed(|| {
        let mut fitness = Vec::with_capacity(population.len());
        let mut highest = evaluator.lowest_possible_fitness();
        let mut lowest = evaluator.highest_possible_fitness();
        for genome in population.iter() {
            let score = evaluator.fitness_of(genome);
            if score > highest {
                highest = score.clone();
            }
            if score < lowest {
                lowest = score.clone();
            }
            fitness.push(score);
        }
        (fitness, highest, lowest)
    })
    .run()
}

/// Determines the best solution of the current population
fn determine_best_solution<G, F>(
    generation: u64,
    score_board: &EvaluatedPopulation<G, F>,
) -> TimedResult<BestSolution<G, F>>
where
    G: Genotype,
    F: Fitness,
{
    timed(|| {
        let evaluated = score_board
            .evaluated_individual_with_fitness(&score_board.highest_fitness())
            .unwrap_or_else(|| {
                panic!(
                    "No fitness value of {:?} found in this EvaluatedPopulation",
                    &score_board.highest_fitness()
                )
            });
        BestSolution {
            found_at: Local::now(),
            generation,
            solution: evaluated,
        }
    })
    .run()
}

/// Lets the parents breed their offspring and mutate its children. And
/// finally combines the offspring of all parents into one big offspring.
#[cfg(not(target_arch = "wasm32"))]
fn par_breed_offspring<G, C, M>(
    parents: Vec<Parents<G>>,
    breeder: &C,
    mutator: &M,
    rng: &mut Prng,
) -> TimedResult<Offspring<G>>
where
    G: Genotype + Send,
    C: CrossoverOp<G> + Sync,
    M: MutationOp<G> + Sync,
{
    if parents.len() < 50 {
        timed(|| {
            let mut offspring: Offspring<G> = Vec::with_capacity(parents.len() * parents[0].len());
            for parents in parents {
                let children = breeder.crossover(parents, rng);
                for child in children {
                    let mutated = mutator.mutate(child, rng);
                    offspring.push(mutated);
                }
            }
            offspring
        })
        .run()
    } else {
        rng.jump();
        let mut rng1 = rng.clone();
        rng.jump();
        let mut rng2 = rng.clone();
        let mid_point = parents.len() / 2;
        let mut offspring = Vec::with_capacity(parents.len() * 2);
        let mut parents = parents;
        let r_slice = parents.drain(mid_point..).collect();
        let l_slice = parents;
        let (mut left, mut right) = rayon::join(
            || par_breed_offspring(l_slice, breeder, mutator, &mut rng1),
            || par_breed_offspring(r_slice, breeder, mutator, &mut rng2),
        );
        offspring.append(&mut left.result);
        offspring.append(&mut right.result);
        TimedResult {
            result: offspring,
            time: left.time + right.time,
        }
    }
}

#[cfg(target_arch = "wasm32")]
fn par_breed_offspring<G, C, M>(
    parents: Vec<Parents<G>>,
    breeder: &C,
    mutator: &M,
    rng: &mut Prng,
) -> TimedResult<Offspring<G>>
where
    G: Genotype + Send,
    C: CrossoverOp<G> + Sync,
    M: MutationOp<G> + Sync,
{
    timed(|| {
        let mut offspring: Offspring<G> = Vec::with_capacity(parents.len() * parents[0].len());
        for parents in parents {
            let children = breeder.crossover(parents, rng);
            for child in children {
                let mutated = mutator.mutate(child, rng);
                offspring.push(mutated);
            }
        }
        offspring
    })
    .run()
}