[][src]Struct generic_graph::SimpleVertex

pub struct SimpleVertex<K: Hash + Eq + Clone, V> { /* fields omitted */ }

A default implementation for vertexes. This implementation should be suitable for most of the problem one can encounter requiring graph.

Contrary to other graph implementation this library does not expect the vertexes to store if they have been visited, or if they were marked. The reason for this is that the author believes such an information should be stored in a structure extern and independent to the graph, this to ensure consistency between threads and to allow different algorithms to use different structures according to their needs

methods are self explanatory

Methods

impl<K: Hash + Eq + Clone, V> SimpleVertex<K, V>[src]

pub fn new(key: K, value: V) -> SimpleVertex<K, V>[src]

Creates a new instance of SimpleVertex

Trait Implementations

impl<K: Debug + Hash + Eq + Clone, V: Debug> Debug for SimpleVertex<K, V>[src]

impl<K: Hash + Eq + Clone, V, W: Add + Sub + Eq + Ord + Copy> DirectedGraph<SimpleVertex<K, V>, DirectedEdge<K, W>, K, V, W, CompoundKey<K>> for AdjacencyGraph<K, V, W>[src]

AdjacencyGraph implement the DirectedGraph trait Specifying the vertex type (DirectedVertex), the edge type (Directed Edge), and the edge key type (CompoundKey). But the vertex key type, the vertex value type and the edge weight type remain generics.

fn adjacent(&self, from: &K, to: &K) -> bool[src]

Check if an edge going from the first to the second vertex exists

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges, DirectedGraph};
use generic_graph::adjacency_list::elements::DirectedEdge;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));
graph.add_vertex(SimpleVertex::new(3, "c"));
graph.add_edge(DirectedEdge::new(2, 3, 3)).expect("Won't fail");
graph.add_edge(DirectedEdge::new(1, 3, 3)).expect("Won't fail");
assert_eq!(true, graph.adjacent(&1, &3));
assert_eq!(false, graph.adjacent(&3, &1));
assert_eq!(false, graph.adjacent(&2, &1));

fn neighbors(&self, from: &K) -> Vec<&K>[src]

Returns a Vector containing the keys of the vertexes reached by edges leaving from the vertex identified by the passed key

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges, DirectedGraph};
use generic_graph::adjacency_list::elements::DirectedEdge;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));
graph.add_vertex(SimpleVertex::new(3, "c"));
graph.add_edge(DirectedEdge::new(2, 3, 3)).expect("Won't fail");
graph.add_edge(DirectedEdge::new(2, 1, 3)).expect("Won't fail");
graph.add_edge(DirectedEdge::new(1, 3, 3)).expect("Won't fail");

let mut neighbors = graph.neighbors(&2);
neighbors.sort();
assert_eq!(neighbors, vec![&1,&3]);

fn leading_to(&self, to: &K) -> Vec<&K>[src]

Returns a vector containing the keys of the Vertexes from which an edge leave to reach the vertex identified by the passed key

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges, DirectedGraph};
use generic_graph::adjacency_list::elements::DirectedEdge;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));
graph.add_vertex(SimpleVertex::new(3, "c"));
graph.add_edge(DirectedEdge::new(2, 3, 3)).expect("Won't fail");
graph.add_edge(DirectedEdge::new(1, 3, 3)).expect("Won't fail");

let mut leading_to = graph.leading_to(&3);
leading_to.sort();
assert_eq!(leading_to, vec![&1,&2]);

fn get_all_keys(&self) -> Vec<&K>[src]

Returns a vector containing the references to keys of all vertexes in the graph

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges, DirectedGraph};
use generic_graph::adjacency_list::elements::DirectedEdge;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));
graph.add_vertex(SimpleVertex::new(3, "c"));
graph.add_edge(DirectedEdge::new(2, 3, 3)).expect("Won't fail");
graph.add_edge(DirectedEdge::new(1, 3, 3)).expect("Won't fail");

let mut keys = graph.get_all_keys();
keys.sort();
assert_eq!(keys, vec![&1, &2, &3]);

fn get_all_pairs(&self) -> Vec<(&K, &K)>[src]

Returns a vector containing the pairs of all edges in the graph

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges, DirectedGraph};
use generic_graph::adjacency_list::elements::DirectedEdge;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));
graph.add_vertex(SimpleVertex::new(3, "c"));
graph.add_edge(DirectedEdge::new(2, 3, 3)).expect("Won't fail");
graph.add_edge(DirectedEdge::new(1, 3, 3)).expect("Won't fail");

let mut pairs = graph.get_all_pairs();
pairs.sort();
assert_eq!(pairs, vec![(&1, &3), (&2, &3)]);

fn get_vertex(&self, key: &K) -> Option<&SimpleVertex<K, V>>[src]

Returns a reference to the vertex identified by the passed key

fn get_mut_vertex(&mut self, key: &K) -> Option<&mut SimpleVertex<K, V>>[src]

Returns a mutable reference to the vertex identified by the passed key

fn get_edge(&self, pair: (&K, &K)) -> Option<&DirectedEdge<K, W>>[src]

Returns a reference to the edge identified by the passed pair of keys

fn get_mut_edge(&mut self, pair: (&K, &K)) -> Option<&mut DirectedEdge<K, W>>[src]

Returns a mutable reference to the edge identified by the passed pair of keys

impl<K: Eq + Hash + Clone, V: Eq> Eq for SimpleVertex<K, V>[src]

impl<K: PartialEq + Hash + Eq + Clone, V: PartialEq> PartialEq<SimpleVertex<K, V>> for SimpleVertex<K, V>[src]

impl<K: Hash + Eq + Clone, V> StructuralEq for SimpleVertex<K, V>[src]

impl<K: Hash + Eq + Clone, V> StructuralPartialEq for SimpleVertex<K, V>[src]

impl<K: Hash + Eq + Clone, V, W: Add + Sub + Eq + Ord + Copy> VariableEdges<SimpleVertex<K, V>, DirectedEdge<K, W>, K, V, W, CompoundKey<K>> for AdjacencyGraph<K, V, W>[src]

AdjacencyGraph uses HashMaps to store edges, allowing fast insertion and removal of the latter

fn add_edge(
    &mut self,
    edge: DirectedEdge<K, W>
) -> Result<Option<DirectedEdge<K, W>>, EdgeSide>
[src]

The add_edge() method shall return Ok(None) if the element was not previously set. Otherwise the element shall be updated (but no the key) and the old element shall be returned as Ok(Some(old_element)). If one or both of the concerned vertexes are missing an error containing an enum specifying which side is missing (Err(EdgeSide))

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges};
use generic_graph::adjacency_list::elements::DirectedEdge;
use generic_graph::EdgeSide::Right;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));
graph.add_vertex(SimpleVertex::new(3, "c"));

assert_eq!(Ok(None), graph.add_edge(DirectedEdge::new(1, 2, 0)));
assert_eq!(Ok(None), graph.add_edge(DirectedEdge::new(2, 1, 0)));
assert_eq!(Ok(None), graph.add_edge(DirectedEdge::new(3, 2, 0)));
assert_eq!(
     Ok(Some(DirectedEdge::new(1, 2, 0))),
     graph.add_edge(DirectedEdge::new(1, 2, 3))
);
assert_eq!(Err(Right), graph.add_edge(DirectedEdge::new(1, 4, 0)));

fn remove_edge(&mut self, pair: (&K, &K)) -> Option<DirectedEdge<K, W>>[src]

The remove_edge() method shall return None if the element was not found, or Some(element) if it was found and removed.

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes, VariableEdges};
use generic_graph::adjacency_list::elements::DirectedEdge;
use generic_graph::EdgeSide::Right;
let mut graph = AdjacencyGraph::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));

graph.add_edge(DirectedEdge::new(1, 2, 3));

assert_eq!(
        Some(DirectedEdge::new(1, 2, 3)),
        graph.remove_edge((&1, &2))
);
assert_eq!(None, graph.remove_edge((&1, &2)));

impl<K: Hash + Eq + Clone, V, W: Add + Sub + Eq + Ord + Copy> VariableVertexes<SimpleVertex<K, V>, DirectedEdge<K, W>, K, V, W, CompoundKey<K>> for AdjacencyGraph<K, V, W>[src]

AdjacencyGraph uses HashMaps to store vertexes, allowing fast insertion and removal of the latter

fn add_vertex(
    &mut self,
    vertex: SimpleVertex<K, V>
) -> Option<SimpleVertex<K, V>>
[src]

This method adds (or, if present, updates maintaining its edges) a vertex and returns None ore Some(old_vertex)

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes};
let mut graph = AdjacencyGraph::<i32, &str, i32>::new();

assert_eq!(None, graph.add_vertex(SimpleVertex::new(1, "a")));
assert_eq!(None, graph.add_vertex(SimpleVertex::new(2, "b")));
assert_eq!(Some(SimpleVertex::new(1, "a")), graph.add_vertex(SimpleVertex::new(1, "c")))

fn remove_vertex(&mut self, key: K) -> Option<SimpleVertex<K, V>>[src]

This method removes a vertex and its edges from the graph and returns None ore Some(old_vertex)

Examples

use generic_graph::adjacency_list::AdjacencyGraph;
use generic_graph::{SimpleVertex, VariableVertexes};
let mut graph = AdjacencyGraph::<i32, &str, i32>::new();
graph.add_vertex(SimpleVertex::new(1, "a"));
graph.add_vertex(SimpleVertex::new(2, "b"));

assert_eq!(None, graph.remove_vertex(0));
assert_eq!(Some(SimpleVertex::new(1, "a")), graph.remove_vertex(1));
assert_eq!(Some(SimpleVertex::new(2, "b")), graph.remove_vertex(2));
assert_eq!(None, graph.remove_vertex(1));

impl<K: Hash + Eq + Clone, V> Vertex<K, V> for SimpleVertex<K, V>[src]

SimpleVertex implement the Vertex trait maintaining the key type and the value type generics

fn get_value(&self) -> &V[src]

Get the value stored in a vertex

fn get_mut_value(&mut self) -> &mut V[src]

Get the value as mutable reference

fn key(&self) -> K[src]

Returns the key of the vertex

Auto Trait Implementations

impl<K, V> RefUnwindSafe for SimpleVertex<K, V> where
    K: RefUnwindSafe,
    V: RefUnwindSafe

impl<K, V> Send for SimpleVertex<K, V> where
    K: Send,
    V: Send

impl<K, V> Sync for SimpleVertex<K, V> where
    K: Sync,
    V: Sync

impl<K, V> Unpin for SimpleVertex<K, V> where
    K: Unpin,
    V: Unpin

impl<K, V> UnwindSafe for SimpleVertex<K, V> where
    K: UnwindSafe,
    V: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.