1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use crate::core_types::{Angle, Rotation2D, Vector2};

/// Helper methods for `Vector2`.
///
/// Trait used to provide additional methods that are equivalent to Godot's methods.
/// See the official [`Godot documentation`](https://docs.godotengine.org/en/3.1/classes/class_vector2.html).
pub trait Vector2Godot {
    /// Returns the ratio of x to y.
    fn aspect(self) -> f32;
    /// Cubicly interpolates between this vector and `b` using `pre_a` and `post_b` as handles,
    /// and returns the result at position `t`. `t` is in the range of 0.0 - 1.0, representing
    /// the amount of interpolation.
    fn cubic_interpolate(self, b: Self, pre_a: Self, post_b: Self, t: f32) -> Self;
    /// Returns the vector rotated by `angle` radians.
    fn rotated(self, angle: Angle) -> Self;
    /// Returns the component of the vector along a plane defined by the given normal.
    fn slide(self, normal: Self) -> Self;
    /// Returns the vector snapped to a grid with the given size.
    fn snapped(self, by: Self) -> Self;
    /// Returns a perpendicular vector.
    fn tangent(self) -> Self;
    /// Returns `self` moved towards `to` by the distance `delta`, clamped by `to`.
    fn move_towards(self, to: Vector2, delta: f32) -> Self;
    /// Returns the normalized vector pointing from this vector to `other`.
    fn direction_to(self, other: Vector2) -> Vector2;
    /// Returns the distance to `other`.
    fn distance_to(self, other: Vector2) -> f32;
    /// Returns the squared distance to `other`.
    ///
    /// This method runs faster than distance_to, so prefer it if you need to compare vectors or
    /// need the squared distance for some formula.
    fn distance_squared_to(self, other: Vector2) -> f32;
    /// Returns the vector with a maximum length by limiting its length to `length`.
    fn clamped(self, length: f32) -> Self;
    /// Internal API for converting to `sys` representation. Makes it possible to remove
    /// `transmute`s elsewhere.
    #[doc(hidden)]
    fn to_sys(self) -> sys::godot_vector2;
    /// Internal API for converting to `sys` representation. Makes it possible to remove
    /// `transmute`s elsewhere.
    #[doc(hidden)]
    fn sys(&self) -> *const sys::godot_vector2;
    /// Internal API for converting from `sys` representation. Makes it possible to remove
    /// `transmute`s elsewhere.
    #[doc(hidden)]
    fn from_sys(v: sys::godot_vector2) -> Self;
}

impl Vector2Godot for Vector2 {
    #[inline]
    fn aspect(self) -> f32 {
        self.x / self.y
    }

    #[inline]
    fn cubic_interpolate(self, b: Self, pre_a: Self, post_b: Self, t: f32) -> Self {
        let v0 = pre_a;
        let v1 = self;
        let v2 = b;
        let v3 = post_b;

        let t2 = t * t;
        let t3 = t2 * t;

        ((v1 * 2.0)
            + (-v0 + v2) * t
            + (v0 * 2.0 - v1 * 5.0 + v2 * 4.0 - v3) * t2
            + (-v0 + v1 * 3.0 - v2 * 3.0 + v3) * t3)
            * 0.5
    }

    #[inline]
    fn rotated(self, angle: Angle) -> Self {
        let r = Rotation2D::new(angle);
        r.transform_vector(self)
    }

    #[inline]
    fn slide(self, normal: Self) -> Self {
        self - normal * self.dot(normal)
    }

    #[inline]
    fn snapped(self, by: Self) -> Self {
        Vector2::new(
            if by.x != 0.0 {
                (self.x / by.x + 0.5).floor() * by.x
            } else {
                self.x
            },
            if by.y != 0.0 {
                (self.y / by.y + 0.5).floor() * by.y
            } else {
                self.y
            },
        )
    }

    #[inline]
    fn tangent(self) -> Self {
        Vector2::new(self.y, -self.x)
    }

    #[inline]
    fn move_towards(self, to: Vector2, delta: f32) -> Self {
        let vd = to - self;
        let len = vd.length();
        if len <= delta || approx::abs_diff_eq!(0.0, len) {
            to
        } else {
            Vector2::lerp(self, to, delta / len)
        }
    }

    #[inline]
    fn direction_to(self, other: Vector2) -> Vector2 {
        (other - self).normalize()
    }

    #[inline]
    fn distance_to(self, other: Vector2) -> f32 {
        (other - self).length()
    }

    #[inline]
    fn distance_squared_to(self, other: Vector2) -> f32 {
        (other - self).square_length()
    }

    #[inline]
    fn clamped(self, length: f32) -> Self {
        self.clamp_length(0.0, length)
    }

    #[inline]
    fn to_sys(self) -> sys::godot_vector2 {
        unsafe { std::mem::transmute(self) }
    }

    #[inline]
    fn sys(&self) -> *const sys::godot_vector2 {
        self as *const _ as *const _
    }

    #[inline]
    fn from_sys(v: sys::godot_vector2) -> Self {
        unsafe { std::mem::transmute(v) }
    }
}

godot_test!(
    test_vector2_variants {
        use crate::core_types::ToVariant;

        fn test(vector: Vector2, set_to: Vector2) {
            use crate::core_types::FromVariant;
            let api = crate::private::get_api();

            let copied = vector;
            unsafe {
                assert_relative_eq!(
                    vector.x,
                    (api.godot_vector2_get_x)(&copied as *const _ as *const sys::godot_vector2),
                );
                assert_relative_eq!(
                    vector.y,
                    (api.godot_vector2_get_y)(&copied as *const _ as *const sys::godot_vector2),
                );
            }
            assert_eq!(vector, copied);

            let mut copied = vector;
            unsafe {
                (api.godot_vector2_set_x)(&mut copied as *mut _ as *mut sys::godot_vector2, set_to.x);
                (api.godot_vector2_set_y)(&mut copied as *mut _ as *mut sys::godot_vector2, set_to.y);
            }
            assert_eq!(set_to, copied);

            let variant = vector.to_variant();
            let vector_from_variant = Vector2::from_variant(&variant).unwrap();
            assert_eq!(vector, vector_from_variant);
        }

        test(Vector2::new(1.0, 2.0), Vector2::new(3.0, 4.0));
        test(Vector2::new(3.0, 4.0), Vector2::new(5.0, 6.0));
    }
);

#[cfg(test)]
mod tests {
    use crate::core_types::vector2::Vector2Godot;
    use crate::core_types::Vector2;

    #[test]
    fn it_is_copy() {
        fn copy<T: Copy>() {}
        copy::<Vector2>();
    }

    #[test]
    fn it_has_the_same_size() {
        use std::mem::size_of;
        assert_eq!(size_of::<sys::godot_vector2>(), size_of::<Vector2>());
    }

    #[test]
    fn it_supports_equality() {
        assert_eq!(Vector2::new(1.0, 2.0), Vector2::new(1.0, 2.0));
    }

    #[test]
    fn it_supports_inequality() {
        assert_ne!(Vector2::new(1.0, 10.0), Vector2::new(1.0, 2.0));
    }

    #[test]
    fn cubic_interpolate_is_sane() {
        use euclid::approxeq::ApproxEq;
        use Vector2 as V;

        assert!(
            V::new(4.7328, -6.7936).approx_eq(&V::new(5.4, -6.8).cubic_interpolate(
                V::new(-1.2, 0.8),
                V::new(1.2, 10.3),
                V::new(-5.4, 4.2),
                0.2
            ))
        );

        assert!(
            V::new(-3.8376, 2.9384).approx_eq(&V::new(-4.2, 1.4).cubic_interpolate(
                V::new(-3.7, 2.1),
                V::new(5.4, -8.5),
                V::new(-10.8, -6.6),
                0.6
            ))
        );
    }

    #[test]
    fn slide_is_sane() {
        use euclid::approxeq::ApproxEq;
        use Vector2 as V;

        let cases = &[
            (V::new(1.0, 1.0), V::new(0.0, 1.0), V::new(1.0, 0.0)),
            (
                V::new(3.0, 4.0),
                V::new(-3.0, 1.0).normalize(),
                V::new(1.5, 4.5),
            ),
            (
                V::new(-2.0, 1.0),
                V::new(-1.0, 3.0).normalize(),
                V::new(-1.5, -0.5),
            ),
        ];

        for &(v, normal, expected) in cases {
            assert!(expected.approx_eq(&v.slide(normal)));
        }
    }

    #[test]
    fn snapped_is_sane() {
        use euclid::approxeq::ApproxEq;
        use Vector2 as V;

        let cases = &[
            (V::new(1.5, 5.6), V::new(1.0, 4.0), V::new(2.0, 4.0)),
            (V::new(5.4, 4.2), V::new(-2.0, -3.5), V::new(6.0, 3.5)),
            (V::new(5.4, -6.8), V::new(0.0, 0.3), V::new(5.4, -6.9)),
        ];

        for &(v, by, expected) in cases {
            assert!(expected.approx_eq(&v.snapped(by)));
        }
    }
}