Struct gdnative_bindings_lily::AStar[][src]

pub struct AStar { /* fields omitted */ }
Expand description

core class AStar inherits Reference (reference counted).

Official documentation

See the documentation of this class in the Godot engine’s official documentation. The method descriptions are generated from it and typically contain code samples in GDScript, not Rust.

Memory management

The lifetime of this object is automatically managed through reference counting.

Class hierarchy

AStar inherits methods from:

Safety

All types in the Godot API have “interior mutability” in Rust parlance. To enforce that the official thread-safety guidelines are followed, the typestate pattern is used in the Ref and TRef smart pointers, and the Instance API. The typestate Access in these types tracks whether the access is unique, shared, or exclusive to the current thread. For more information, see the type-level documentation on Ref.

Implementations

Creates a new instance of this object.

This is a reference-counted type. The returned object is automatically managed by Ref.

Sample code is GDScript unless otherwise noted.

Adds a new point at the given position with the given identifier. The algorithm prefers points with lower weight_scale to form a path. The id must be 0 or larger, and the weight_scale must be 1 or larger.

var astar = AStar.new()
astar.add_point(1, Vector3(1, 0, 0), 4) # Adds the point (1, 0, 0) with weight_scale 4 and id 1

If there already exists a point for the given id, its position and weight scale are updated to the given values.

Default Arguments

  • weight_scale - 1.0

Returns whether the two given points are directly connected by a segment. If bidirectional is false, returns whether movement from id to to_id is possible through this segment.

Default Arguments

  • bidirectional - true

Clears all the points and segments.

Sample code is GDScript unless otherwise noted.

Creates a segment between the given points. If bidirectional is false, only movement from id to to_id is allowed, not the reverse direction.

var astar = AStar.new()
astar.add_point(1, Vector3(1, 1, 0))
astar.add_point(2, Vector3(0, 5, 0))
astar.connect_points(1, 2, false)

Default Arguments

  • bidirectional - true

Deletes the segment between the given points. If bidirectional is false, only movement from id to to_id is prevented, and a unidirectional segment possibly remains.

Default Arguments

  • bidirectional - true

Returns the next available point ID with no point associated to it.

Returns the ID of the closest point to to_position, optionally taking disabled points into account. Returns -1 if there are no points in the points pool. Note: If several points are the closest to to_position, the one with the smallest ID will be returned, ensuring a deterministic result.

Default Arguments

  • include_disabled - false

Sample code is GDScript unless otherwise noted.

Returns the closest position to to_position that resides inside a segment between two connected points.

var astar = AStar.new()
astar.add_point(1, Vector3(0, 0, 0))
astar.add_point(2, Vector3(0, 5, 0))
astar.connect_points(1, 2)
var res = astar.get_closest_position_in_segment(Vector3(3, 3, 0)) # Returns (0, 3, 0)

The result is in the segment that goes from y = 0 to y = 5. It’s the closest position in the segment to the given point.

Sample code is GDScript unless otherwise noted.

Returns an array with the IDs of the points that form the path found by AStar between the given points. The array is ordered from the starting point to the ending point of the path.

var astar = AStar.new()
astar.add_point(1, Vector3(0, 0, 0))
astar.add_point(2, Vector3(0, 1, 0), 1) # Default weight is 1
astar.add_point(3, Vector3(1, 1, 0))
astar.add_point(4, Vector3(2, 0, 0))

astar.connect_points(1, 2, false)
astar.connect_points(2, 3, false)
astar.connect_points(4, 3, false)
astar.connect_points(1, 4, false)

var res = astar.get_id_path(1, 3) # Returns [1, 2, 3]

If you change the 2nd point’s weight to 3, then the result will be [1, 4, 3] instead, because now even though the distance is longer, it’s “easier” to get through point 4 than through point 2.

Returns the capacity of the structure backing the points, useful in conjunction with reserve_space.

Sample code is GDScript unless otherwise noted.

Returns an array with the IDs of the points that form the connection with the given point.

var astar = AStar.new()
astar.add_point(1, Vector3(0, 0, 0))
astar.add_point(2, Vector3(0, 1, 0))
astar.add_point(3, Vector3(1, 1, 0))
astar.add_point(4, Vector3(2, 0, 0))

astar.connect_points(1, 2, true)
astar.connect_points(1, 3, true)

var neighbors = astar.get_point_connections(1) # Returns [2, 3]

Returns the number of points currently in the points pool.

Returns an array with the points that are in the path found by AStar between the given points. The array is ordered from the starting point to the ending point of the path.

Returns the position of the point associated with the given id.

Returns the weight scale of the point associated with the given id.

Returns an array of all points.

Returns whether a point associated with the given id exists.

Returns whether a point is disabled or not for pathfinding. By default, all points are enabled.

Removes the point associated with the given id from the points pool.

Reserves space internally for num_nodes points, useful if you’re adding a known large number of points at once, for a grid for instance. New capacity must be greater or equals to old capacity.

Disables or enables the specified point for pathfinding. Useful for making a temporary obstacle.

Default Arguments

  • disabled - true

Sets the position for the point with the given id.

Sets the weight_scale for the point with the given id.

Methods from Deref<Target = Reference>

Initializes the internal reference counter. Use this only if you really know what you are doing. Returns whether the initialization was successful.

Trait Implementations

Formats the value using the given formatter. Read more

The resulting type after dereferencing.

Dereferences the value.

Mutably dereferences the value.

The memory management kind of this type. This modifies the behavior of the Ref smart pointer. See its type-level documentation for more information. Read more

Creates an explicitly null reference of Self as a method argument. This makes type inference easier for the compiler compared to Option. Read more

Creates a new instance of Self using a zero-argument constructor, as a Unique reference. Read more

Performs a dynamic reference downcast to target type. Read more

Performs a static reference upcast to a supertype that is guaranteed to be valid. Read more

Creates a persistent reference to the same Godot object with shared thread access. Read more

Creates a persistent reference to the same Godot object with thread-local thread access. Read more

Creates a persistent reference to the same Godot object with unique access. Read more

Recovers a instance ID previously returned by Object::get_instance_id if the object is still alive. See also TRef::try_from_instance_id. Read more

Recovers a instance ID previously returned by Object::get_instance_id if the object is still alive, and panics otherwise. This does NOT guarantee that the resulting reference is safe to use. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.