1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//! # Serial Peripheral Interface

use nb;

pub use crate::hal::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
use crate::pac::{spi0, SPI0, SPI1};
use crate::gpio::gpioa::{PA5, PA6, PA7};
use crate::gpio::gpiob::{PB13, PB14, PB15, PB3, PB4, PB5};
use crate::gpio::{Alternate, Floating, Input, PushPull};
use crate::rcu::{Enable, Reset, Clocks};
use crate::time::Hertz;
use crate::afio::Remap;
use core::ops::Deref;

/// SPI error
#[derive(Debug)]
pub enum Error {
    /// Overrun occurred
    Overrun,
    /// Mode fault occurred
    ModeFault,
    /// CRC error
    Crc,
    #[doc(hidden)]
    _Extensible,
}

#[doc(hidden)]
pub trait SpiX: Deref<Target = spi0::RegisterBlock> {}
impl SpiX for SPI0 {}
impl SpiX for SPI1 {}

pub trait Pins<SPI> {
    const REMAP: bool;
}

impl Pins<SPI0>
    for (
        PA5<Alternate<PushPull>>,
        PA6<Input<Floating>>,
        PA7<Alternate<PushPull>>,
    )
{
    const REMAP: bool = false;
}

impl Pins<SPI0>
    for (
        PB3<Alternate<PushPull>>,
        PB4<Input<Floating>>,
        PB5<Alternate<PushPull>>,
    )
{
    const REMAP: bool = true;
}

impl Pins<SPI1>
    for (
        PB13<Alternate<PushPull>>,
        PB14<Input<Floating>>,
        PB15<Alternate<PushPull>>,
    )
{
    const REMAP: bool = false;
}

pub struct Spi<SPI, PINS> {
    spi: SPI,
    pins: PINS,
}

impl<PINS: Pins<SPI0>> Spi<SPI0, PINS> {
    pub fn spi0(
        spi: SPI0,
        pins: PINS,
        mode: Mode,
        freq: impl Into<Hertz>,
        clocks: &Clocks
    ) -> Self
    {
        SPI0::remap(PINS::REMAP);
        Spi::new(spi, pins, mode, freq, clocks)
    }
}

impl<PINS: Pins<SPI1>> Spi<SPI1, PINS> {
    pub fn spi1(
        spi: SPI1,
        pins: PINS,
        mode: Mode,
        freq: impl Into<Hertz>,
        clocks: &Clocks
    ) -> Self
    {
        Spi::new(spi, pins, mode, freq, clocks)
    }
}

impl<SPI, PINS> Spi<SPI, PINS> where SPI: SpiX
{
    fn new(
        spi: SPI,
        pins: PINS,
        mode: Mode,
        freq: impl Into<Hertz>,
        clocks: &Clocks
    ) -> Self where SPI: Enable + Reset {
        SPI::enable();
        SPI::reset();

        // disable SS output
        spi.ctl1.write(|w| w.nssdrv().clear_bit());

        let br = match clocks.pclk2().0 / freq.into().0 {
            0 => unreachable!(),
            1..=2 => 0b000,
            3..=5 => 0b001,
            6..=11 => 0b010,
            12..=23 => 0b011,
            24..=47 => 0b100,
            48..=95 => 0b101,
            96..=191 => 0b110,
            _ => 0b111,
        };

        // mstr: master configuration
        // lsbfirst: MSB first
        // ssm: enable software slave management (NSS pin free for other uses)
        // ssi: set nss high = master mode
        spi.ctl0.write(|w| unsafe { w
            .ckph().bit(mode.phase == Phase::CaptureOnSecondTransition)
            .ckpl().bit(mode.polarity == Polarity::IdleHigh)
            .mstmod().set_bit()     // Master mode
            .psc().bits(br)         // Master clock prescaler selection
            .lf().clear_bit()       // Transmit MSB first
            .swnss().set_bit()      // NSS pin is pulled high
            .swnssen().set_bit()    // NSS software mode. The NSS level depends on SWNSS bit.
            .ro().clear_bit()       // Full-duplex mode
            .ff16().clear_bit()     // 8-bit data frame format
            .bden().clear_bit()     // 2-line unidirectional mode
            .spien().set_bit()      // Enable SPI peripheral
        });

        Spi { spi, pins }
    }

    pub fn free(self) -> (SPI, PINS) {
        (self.spi, self.pins)
    }
}

impl<SPI: SpiX, PINS> crate::hal::spi::FullDuplex<u8> for Spi<SPI, PINS> {
    type Error = Error;

    fn read(&mut self) -> nb::Result<u8, Error> {
        let sr = self.spi.stat.read();

        Err(if sr.rxorerr().bit_is_set() {
            nb::Error::Other(Error::Overrun)
        } else if sr.conferr().bit_is_set() {
            nb::Error::Other(Error::ModeFault)
        } else if sr.crcerr().bit_is_set() {
            nb::Error::Other(Error::Crc)
        } else if sr.rbne().bit_is_set() {
            let byte = (self.spi.data.read().bits() & 0xff) as u8;
            return Ok(byte);
        } else {
            nb::Error::WouldBlock
        })
    }

    fn send(&mut self, byte: u8) -> nb::Result<(), Error> {
        let sr = self.spi.stat.read();

        Err(if sr.rxorerr().bit_is_set() {
            nb::Error::Other(Error::Overrun)
        } else if sr.conferr().bit_is_set() {
            nb::Error::Other(Error::ModeFault)
        } else if sr.crcerr().bit_is_set() {
            nb::Error::Other(Error::Crc)
        } else if sr.tbe().bit_is_set() {
            self.spi.data.write(|w| unsafe { w.bits(byte as u16) });
            return Ok(());
        } else {
            nb::Error::WouldBlock
        })
    }

}

impl<SPI: SpiX, PINS> crate::hal::blocking::spi::transfer::Default<u8> for Spi<SPI, PINS> {}

impl<SPI: SpiX, PINS> crate::hal::blocking::spi::write::Default<u8> for Spi<SPI, PINS> {}