Struct gchemol_lattice::Lattice
source · pub struct Lattice { /* private fields */ }
Expand description
Periodic 3D lattice
Implementations§
source§impl Lattice
impl Lattice
sourcepub fn new<T: Into<Vector3f> + Copy>(tvs: [T; 3]) -> Self
pub fn new<T: Into<Vector3f> + Copy>(tvs: [T; 3]) -> Self
Construct Lattice
from three lattice vectors.
sourcepub fn from_matrix<T: Into<Matrix3f>>(tvs: T) -> Self
pub fn from_matrix<T: Into<Matrix3f>>(tvs: T) -> Self
Construct Lattice
from lattice matrix (3x3).
sourcepub fn from_params(a: f64, b: f64, c: f64, alpha: f64, beta: f64, gamma: f64) -> Self
pub fn from_params(a: f64, b: f64, c: f64, alpha: f64, beta: f64, gamma: f64) -> Self
Construct lattice from lattice parameters Unit cell angles in degrees, lengths in Angstrom
sourcepub fn widths(&self) -> [f64; 3]
pub fn widths(&self) -> [f64; 3]
Return the perpendicular widths of the cell along three directions. i.e. the distance between opposite faces of the unit cell
sourcepub fn volume(&self) -> f64
pub fn volume(&self) -> f64
Return the volume of the unit cell the cache will be updated if necessary
sourcepub fn set_origin<T: Into<Vector3f>>(&mut self, loc: T)
pub fn set_origin<T: Into<Vector3f>>(&mut self, loc: T)
Set cell origin in Cartesian coordinates
sourcepub fn scale_by_a(&mut self, v: f64)
pub fn scale_by_a(&mut self, v: f64)
Scale Lattice in a
direction by a positive constant v
sourcepub fn scale_by_b(&mut self, v: f64)
pub fn scale_by_b(&mut self, v: f64)
Scale Lattice in b
direction by a positive constant v
sourcepub fn scale_by_c(&mut self, v: f64)
pub fn scale_by_c(&mut self, v: f64)
Scale Lattice in c
direction by a positive constant v
sourcepub fn to_frac<T: Into<Vector3f>>(&self, p: T) -> Vector3f
pub fn to_frac<T: Into<Vector3f>>(&self, p: T) -> Vector3f
Returns the fractional coordinates given cartesian coordinates.
sourcepub fn to_cart<T: Into<Vector3f>>(&self, p: T) -> Vector3f
pub fn to_cart<T: Into<Vector3f>>(&self, p: T) -> Vector3f
Returns the cartesian coordinates given fractional coordinates.
sourcepub fn inv_matrix(&self) -> Matrix3f
pub fn inv_matrix(&self) -> Matrix3f
inverse of lattice matrix
sourcepub fn is_orthorhombic(&self) -> bool
pub fn is_orthorhombic(&self) -> bool
Check if lattice is orthorhombic
sourcepub fn wrap<T: Into<Vector3f>>(&self, vec: T) -> Vector3f
pub fn wrap<T: Into<Vector3f>>(&self, vec: T) -> Vector3f
Wrap a point in cartesian coordinates into unit cell, obeying the periodic boundary conditions. Returns cartesian coordinates.
sourcepub fn wrap_frac<T: Into<Vector3f>>(&self, f: T) -> Vector3f
pub fn wrap_frac<T: Into<Vector3f>>(&self, f: T) -> Vector3f
Wrap a point in fractional coordinates into unit cell, obeying the periodic boundary conditions. Returns fractional coordinates.
Trait Implementations§
source§impl<'de> Deserialize<'de> for Lattice
impl<'de> Deserialize<'de> for Lattice
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where __D: Deserializer<'de>,
impl Copy for Lattice
Auto Trait Implementations§
impl RefUnwindSafe for Lattice
impl Send for Lattice
impl Sync for Lattice
impl Unpin for Lattice
impl UnwindSafe for Lattice
Blanket Implementations§
source§impl<T> Configure for Twhere
T: Default + DeserializeOwned + Serialize,
impl<T> Configure for Twhere T: Default + DeserializeOwned + Serialize,
source§fn print_toml(&self)
fn print_toml(&self)
source§fn from_json(s: &str) -> Result<Self, Error>
fn from_json(s: &str) -> Result<Self, Error>
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.