1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// imports

// [[file:~/Workspace/Programming/gchemol-rs/gchemol-core/gchemol-core.note::*imports][imports:1]]
use gut::prelude::*;

use crate::element::*;
use crate::property::PropertyStore;
// imports:1 ends here

// base

// [[file:~/Workspace/Programming/gchemol-rs/gchemol-core/gchemol-core.note::*base][base:1]]
/// nalgebra 3D Vector
pub type Vector3f = vecfx::Vector3f;

/// Plain 3D array
pub type Point3 = [f64; 3];

/// Atom is the smallest particle still characterizing a chemical element.
///
/// # Reference
///
/// https://goldbook.iupac.org/html/A/A00493.html
///
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct Atom {
    /// Arbitrary property stored in key-value pair. Key is a string type, but
    /// it is the responsibility of the user to correctly interpret the value.
    pub properties: PropertyStore,

    /// Chemical element or dummy atom.
    kind: AtomKind,

    /// Atom position.
    position: Vector3f,

    /// Atom label.
    label: Option<String>,

    /// Vector quantity equal to the derivative of the position vector with respect to time
    pub(crate) velocity: Vector3f,

    /// Atomic mass
    pub(crate) mass: Option<f64>,

    /// Atomic momentum vector
    pub(crate) momentum: Vector3f,

    /// Atomic partial charge
    pub(crate) partial_charge: Option<f64>,
}

impl Default for Atom {
    fn default() -> Self {
        Self {
            properties: PropertyStore::default(),
            kind: "C".into(),
            position: Vector3f::new(0.0, 0.0, 0.0),
            momentum: Vector3f::new(0.0, 0.0, 0.0),
            velocity: Vector3f::new(0.0, 0.0, 0.0),
            partial_charge: None,

            // FIXME
            mass: None,
            label: None,
        }
    }
}

impl Atom {
    /// Construct `Atom` from element symbol and Cartesian coordinates.
    pub fn new<S: Into<AtomKind>, P: Into<Vector3f>>(s: S, p: P) -> Self {
        Self {
            kind: s.into(),
            position: p.into(),
            ..Default::default()
        }
    }

    /// Return element symbol
    pub fn symbol(&self) -> &str {
        self.kind.symbol()
    }

    /// Return atomic number
    pub fn number(&self) -> usize {
        self.kind.number()
    }

    /// Return atom position in 3D Cartesian coordinates
    pub fn position(&self) -> Point3 {
        self.position.into()
    }

    /// Set atom position in 3D Cartesian coordinates
    pub fn set_position<P: Into<Vector3f>>(&mut self, p: P) {
        self.position = p.into();
    }

    /// Return atom kind.
    pub fn kind(&self) -> &AtomKind {
        &self.kind
    }

    /// Set atom label
    pub fn set_label<S: Into<String>>(&mut self, lbl: S) {
        self.label = Some(lbl.into());
    }

    /// Return the user defined atom label, if not return the elment symbol.
    pub fn label(&self) -> &str {
        if let Some(ref l) = self.label {
            return l;
        }

        // default atom label: element symbol
        self.symbol()
    }

    /// Set atom symbol.
    pub fn set_symbol<S: Into<AtomKind>>(&mut self, symbol: S) {
        self.kind = symbol.into()
    }

    /// Assign atom partial charge, usually for molecular mechanical
    /// calculations.
    pub fn set_partial_charge(&mut self, c: f64) {
        self.partial_charge = Some(c);
    }

    /// Return true if atom is dummy.
    pub fn is_dummy(&self) -> bool {
        match self.kind {
            AtomKind::Element(_) => false,
            AtomKind::Dummy(_) => true,
        }
    }

    /// Return true if atom is an element.
    pub fn is_element(&self) -> bool {
        !self.is_dummy()
    }
}
// base:1 ends here

// convert

// [[file:~/Workspace/Programming/gchemol-rs/gchemol-core/gchemol-core.note::*convert][convert:1]]
use std::convert::From;
use std::str::FromStr;

impl FromStr for Atom {
    type Err = Error;

    fn from_str(line: &str) -> Result<Self> {
        let parts: Vec<_> = line.split_whitespace().collect();
        if parts.len() != 4 {
            bail!("Incorrect number of data fields: {:?}", line);
        }

        let sym = parts[0];
        let px: f64 = parts[1].parse()?;
        let py: f64 = parts[2].parse()?;
        let pz: f64 = parts[3].parse()?;

        let atom = Atom::new(sym, [px, py, pz]);

        Ok(atom)
    }
}

impl std::fmt::Display for Atom {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "{:6} {:-12.6} {:-12.6} {:-12.6}",
            self.symbol(),
            self.position[0],
            self.position[1],
            self.position[2]
        )
    }
}

impl<S, P> From<(S, P)> for Atom
where
    S: Into<AtomKind>,
    P: Into<Vector3f>,
{
    fn from(item: (S, P)) -> Self {
        Self::new(item.0, item.1)
    }
}
// convert:1 ends here

// test

// [[file:~/Workspace/Programming/gchemol-rs/gchemol-core/gchemol-core.note::*test][test:1]]
#[test]
fn test_atom_basic() {
    let _ = Atom::default();
    let atom = Atom::new("Fe", [9.3; 3]);
    assert_eq!(9.3, atom.position()[0]);
    assert_eq!("Fe", atom.symbol());
    assert_eq!(26, atom.number());

    let mut atom = Atom::new(6, [1.0, 0.0, 0.0]);
    assert_eq!(atom.symbol(), "C");
    atom.set_symbol("H");
    assert_eq!(atom.symbol(), "H");

    let atom = Atom::new("X", [9.3; 3]);
    assert_eq!("X", atom.symbol());
    assert_eq!(0, atom.number());
}

#[test]
fn test_atom_convert() {
    let line = "H 1.0 1.0 1.0";
    let a: Atom = line.parse().unwrap();
    let line = a.to_string();
    let b: Atom = line.parse().unwrap();
    assert_eq!(a.symbol(), b.symbol());
    assert_eq!(a.position(), b.position());

    // from and into
    let a: Atom = (1, [0.0; 3]).into();
    assert_eq!(a.number(), 1);
}
// test:1 ends here