1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use core::ops::*;

/// `i16` with 8 bits of fixed-point fraction.
///
/// This is used by the affine matrix entries.
#[allow(non_camel_case_types)]
pub type i16fx8 = Fixed<i16, 8>;

/// `i16` with 14 bits of fixed-point fraction.
///
/// This is used by the [`ArcTan`](crate::bios::ArcTan) and
/// [`ArcTan2`](crate::bios::ArcTan2) BIOS functions.
#[allow(non_camel_case_types)]
pub type i16fx14 = Fixed<i16, 14>;

/// `i32` with 8 bits of fixed-point fraction.
///
/// This is used by the background reference point entries.
#[allow(non_camel_case_types)]
pub type i32fx8 = Fixed<i32, 8>;

/// A [fixed-point][wp-fp] number. This transparently wraps an integer with a
/// const generic for how many bits are fractional.
///
/// [wp-fp]: https://en.wikipedia.org/wiki/Fixed-point_arithmetic
///
/// * This type is generic, but the `I` type is intended to be a signed or
///   unsigned integer of a fixed bit size: `i8`, `i16`, `i32`, `u8`, `u16`, or
///   `u32`. This type is *not* semver supported to work with any other `I`
///   type. If it does work for other types of `I`, that's on accident.
/// * The `B` value is the number of bits that form the fractional part. It
///   should be *less than* the number of bits in the integer's type. Multiply
///   and divide ops need to shift the value by `B`, and so if `B` is greater
///   than or equal to the integer's size the op will panic.
#[derive(Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct Fixed<I, const B: u32>(I);

macro_rules! impl_trait_op_unit {
  ($t:ty, $trait:ident, $op:ident) => {
    impl<const B: u32> $trait for Fixed<$t, B> {
      type Output = Self;
      #[inline]
      #[must_use]
      fn $op(self) -> Self::Output {
        Self::$op(self)
      }
    }
  };
}
macro_rules! impl_trait_op_self_rhs {
  ($t:ty, $trait:ident, $op:ident) => {
    impl<const B: u32> $trait for Fixed<$t, B> {
      type Output = Self;
      #[inline]
      #[must_use]
      fn $op(self, rhs: Self) -> Self::Output {
        Self::$op(self, rhs)
      }
    }
  };
}
macro_rules! impl_trait_op_assign_self_rhs {
  ($t:ty, $trait:ident, $op:ident, $op_assign:ident) => {
    impl<const B: u32> $trait for Fixed<$t, B> {
      #[inline]
      fn $op_assign(&mut self, rhs: Self) {
        *self = self.$op(rhs);
      }
    }
  };
}
macro_rules! impl_shift_self_u32 {
  ($t:ty, $trait:ident, $op:ident) => {
    impl<const B: u32> $trait<u32> for Fixed<$t, B> {
      type Output = Self;
      #[inline]
      #[must_use]
      fn $op(self, rhs: u32) -> Self::Output {
        Self::$op(self, rhs)
      }
    }
  };
}
macro_rules! impl_shift_assign_self_u32 {
  ($t:ty, $trait:ident, $op:ident, $op_assign:ident) => {
    impl<const B: u32> $trait<u32> for Fixed<$t, B> {
      #[inline]
      fn $op_assign(&mut self, rhs: u32) {
        *self = self.$op(rhs);
      }
    }
  };
}

macro_rules! impl_common_fixed_ops {
  ($t:ty) => {
    impl<const B: u32> Fixed<$t, B> {
      /// Shifts the value left by `B`, wrapping it into the range of this Fixed
      /// type.
      #[inline]
      #[must_use]
      pub const fn wrapping_from(i: $t) -> Self {
        Self(i << B)
      }

      /// Makes a `Fixed` directly from a raw inner value (no shift).
      #[inline]
      #[must_use]
      pub const fn from_raw(i: $t) -> Self {
        Self(i)
      }

      /// Unwraps the inner value directly into the base type (no shift).
      #[inline]
      #[must_use]
      pub const fn into_raw(self) -> $t {
        self.0
      }

      /// Bitwise Not.
      #[inline]
      #[must_use]
      pub const fn not(self) -> Self {
        Self(!self.0)
      }

      /// Addition.
      #[inline]
      #[must_use]
      pub const fn add(self, rhs: Self) -> Self {
        Self(self.0 + rhs.0)
      }

      /// Subtraction.
      #[inline]
      #[must_use]
      pub const fn sub(self, rhs: Self) -> Self {
        Self(self.0 - rhs.0)
      }

      /// Remainder.
      #[inline]
      #[must_use]
      pub const fn rem(self, rhs: Self) -> Self {
        Self(self.0 % rhs.0)
      }

      /// Bitwise AND.
      #[inline]
      #[must_use]
      pub const fn bitand(self, rhs: Self) -> Self {
        Self(self.0 & rhs.0)
      }

      /// Bitwise OR.
      #[inline]
      #[must_use]
      pub const fn bitor(self, rhs: Self) -> Self {
        Self(self.0 | rhs.0)
      }

      /// Bitwise XOR.
      #[inline]
      #[must_use]
      pub const fn bitxor(self, rhs: Self) -> Self {
        Self(self.0 ^ rhs.0)
      }

      /// Bit-shift Left.
      #[inline]
      #[must_use]
      pub const fn shl(self, rhs: u32) -> Self {
        Self(self.0 << rhs)
      }

      /// Bit-shift Right.
      #[inline]
      #[must_use]
      pub const fn shr(self, rhs: u32) -> Self {
        Self(self.0 >> rhs)
      }
    }
    impl_trait_op_unit!($t, Not, not);
    impl_trait_op_self_rhs!($t, Add, add);
    impl_trait_op_self_rhs!($t, Sub, sub);
    impl_trait_op_self_rhs!($t, Mul, mul);
    impl_trait_op_self_rhs!($t, Div, div);
    impl_trait_op_self_rhs!($t, Rem, rem);
    impl_trait_op_self_rhs!($t, BitAnd, bitand);
    impl_trait_op_self_rhs!($t, BitOr, bitor);
    impl_trait_op_self_rhs!($t, BitXor, bitxor);
    impl_shift_self_u32!($t, Shl, shl);
    impl_shift_self_u32!($t, Shr, shr);
    impl_trait_op_assign_self_rhs!($t, AddAssign, add, add_assign);
    impl_trait_op_assign_self_rhs!($t, SubAssign, sub, sub_assign);
    impl_trait_op_assign_self_rhs!($t, MulAssign, mul, mul_assign);
    impl_trait_op_assign_self_rhs!($t, DivAssign, div, div_assign);
    impl_trait_op_assign_self_rhs!($t, RemAssign, rem, rem_assign);
    impl_trait_op_assign_self_rhs!($t, BitAndAssign, bitand, bitand_assign);
    impl_trait_op_assign_self_rhs!($t, BitOrAssign, bitor, bitor_assign);
    impl_trait_op_assign_self_rhs!($t, BitXorAssign, bitxor, bitxor_assign);
    impl_shift_assign_self_u32!($t, ShlAssign, shl, shl_assign);
    impl_shift_assign_self_u32!($t, ShrAssign, shr, shr_assign);
  };
}
impl_common_fixed_ops!(i8);
impl_common_fixed_ops!(i16);
impl_common_fixed_ops!(i32);
impl_common_fixed_ops!(u8);
impl_common_fixed_ops!(u16);
impl_common_fixed_ops!(u32);

macro_rules! impl_signed_fixed_ops {
  ($t:ty, $unsigned:ty) => {
    impl<const B: u32> Fixed<$t, B> {
      /// Negate.
      #[inline]
      #[must_use]
      pub const fn neg(self) -> Self {
        Self(-self.0)
      }

      /// If the number is negative or not.
      #[inline]
      #[must_use]
      pub const fn is_negative(self) -> bool {
        self.0 < 0
      }

      /// Multiply.
      #[inline]
      #[must_use]
      pub const fn mul(self, rhs: Self) -> Self {
        let raw = (self.0 as i32) * (rhs.0 as i32);
        Self((raw >> B) as $t)
      }

      /// Divide.
      #[inline]
      #[must_use]
      pub const fn div(self, rhs: Self) -> Self {
        let m = (self.0 as i32) * (1 << B);
        let d = m / (rhs.0 as i32);
        Self(d as $t)
      }

      /// Fractional part of the value.
      #[inline]
      #[must_use]
      pub const fn fract(self) -> Self {
        let frac_mask = (<$unsigned>::MAX >> (<$t>::BITS - B));
        Self((self.0.unsigned_abs() & frac_mask) as $t)
      }

      /// Whole part of the value.
      #[inline]
      #[must_use]
      pub const fn trunc(self) -> Self {
        Self(((self.0.unsigned_abs() >> B) << B) as $t)
      }
    }
    impl_trait_op_unit!($t, Neg, neg);
    impl<const B: u32> core::fmt::Debug for Fixed<$t, B> {
      #[inline]
      fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let whole: $t = self.trunc().into_raw() >> B;
        let fract: $t = self.fract().into_raw();
        let divisor: $t = 1 << B;
        if self.is_negative() {
          let whole = whole.unsigned_abs();
          write!(f, "-({whole}+{fract}/{divisor})")
        } else {
          write!(f, "{whole}+{fract}/{divisor}")
        }
      }
    }
  };
}
impl_signed_fixed_ops!(i8, u8);
impl_signed_fixed_ops!(i16, u16);
impl_signed_fixed_ops!(i32, u32);

macro_rules! impl_unsigned_fixed_ops {
  ($t:ty) => {
    impl<const B: u32> Fixed<$t, B> {
      /// Multiply.
      #[inline]
      #[must_use]
      pub const fn mul(self, rhs: Self) -> Self {
        let raw = (self.0 as u32) * (rhs.0 as u32);
        Self((raw >> B) as $t)
      }

      /// Divide.
      #[inline]
      #[must_use]
      pub const fn div(self, rhs: Self) -> Self {
        let m = (self.0 as u32) * (1 << B);
        let d = m / (rhs.0 as u32);
        Self(d as $t)
      }

      /// Fractional part of the value.
      #[inline]
      #[must_use]
      pub const fn fract(self) -> Self {
        Self(self.0 & (<$t>::MAX >> (<$t>::BITS - B)))
      }

      /// Whole part of the value.
      #[inline]
      #[must_use]
      pub const fn trunc(self) -> Self {
        Self(self.0 & (<$t>::MAX << B))
      }
    }
    impl<const B: u32> core::fmt::Debug for Fixed<$t, B> {
      #[inline]
      fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let whole: $t = self.trunc().into_raw() >> B;
        let fract: $t = self.fract().into_raw();
        let divisor: $t = 1 << B;
        write!(f, "{whole}+{fract}/{divisor}")
      }
    }
  };
}
impl_unsigned_fixed_ops!(u8);
impl_unsigned_fixed_ops!(u16);
impl_unsigned_fixed_ops!(u32);