1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
use std;
use vec2::Vec2;

type Row = (f32, f32);
type InlineMat2 = (f32, f32, f32, f32);

/// A 2x2-component Euclidean matrix useful for linear algebra computation in game development
/// and 2D rendering.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Mat2 {
    /// The two rows of the matrix, represented by an array of two `Vec2<f32>` objects.
    pub rows: [Vec2<f32>; 2],
}

impl Mat2 {
    /// Constructs a 2x2 identity matrix.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::{Mat2, Vec2};
    ///
    /// let m = Mat2::identity();
    ///
    /// assert_eq!(m[0], Vec2::new(1.0, 0.0));
    /// assert_eq!(m[1], Vec2::new(0.0, 1.0));
    /// ```
    pub fn identity() -> Mat2 {
        Self::default()
    }

    /// Extracts and returns a transposed representation of the calling `Mat2` object.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::Mat2;
    ///
    /// let m: Mat2 = ((0.0, 1.0),
    ///                (2.0, 3.0)).into();
    ///
    /// assert_eq!(m.transposed(), ((0.0, 2.0),
    ///                             (1.0, 3.0)).into());
    /// ```
    pub fn transposed(&self) -> Mat2 {
        (
            (self[0][0], self[1][0]),
            (self[0][1], self[1][1]),
        ).into()
    }

    /// Performs a transpose operation on the calling `Mat2` object.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::Mat2;
    ///
    /// let mut m: Mat2 = ((0.0, 1.0),
    ///                    (3.0, 4.0)).into();
    ///
    /// m.transpose();
    ///
    /// assert_eq!(m, ((0.0, 3.0),
    ///                (1.0, 4.0)).into());
    /// ```
    pub fn transpose(&mut self) {
        *self = self.transposed();
    }

    /// Constructs a 2x2 rotation matrix from a radians value.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::{Mat2, Vec2};
    ///
    /// let m = Mat2::rotation(1.0);
    ///
    /// assert_eq!(m[0], Vec2::new(0.5403023,  -0.84147096,));
    /// assert_eq!(m[1], Vec2::new(0.84147096,  0.54030230,));
    /// ```
    pub fn rotation(radians: f32) -> Mat2 {
        let sin = radians.sin();
        let cos = radians.cos();

        ((cos, -sin), (sin, cos)).into()
    }

    /// Calculates and returns a `Mat2` object representing the calling `Mat2` object rotated
    /// by a radians value.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::Mat2;
    ///
    /// let m = Mat2::identity().rotated(1.0);
    ///
    /// assert_eq!(m, ((0.5403023,  -0.84147096,),
    ///                (0.84147096,  0.54030230,)).into());
    /// ```
    pub fn rotated(&self, radians: f32) -> Mat2 {
        *self * Mat2::rotation(radians)
    }

    /// Rotates the calling `Mat2` object by a radians value.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::Mat2;
    ///
    /// let mut m = Mat2::identity();
    ///
    /// m.rotate(1.0);
    ///
    /// assert_eq!(m, ((0.5403023,  -0.84147096,),
    ///                (0.84147096,  0.54030230,)).into());
    /// ```
    pub fn rotate(&mut self, radians: f32) {
        *self = self.rotated(radians);
    }

    /// Calculates and returns a `Mat2` object representing the calling `Mat2` object scaled
    /// by a `Vec2<f32>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::{Mat2, Vec2};
    ///
    /// let m = Mat2::identity();
    ///
    /// assert_eq!(m.scaled(Vec2::new(3.0, 6.0)), ((3.0, 0.0),
    ///                                            (0.0, 6.0)).into());
    /// ```
    pub fn scaled(&self, factor: Vec2<f32>) -> Mat2 {
        let mut matrix = *self;

        matrix[0] *= factor.x;
        matrix[1] *= factor.y;

        matrix
    }

    /// Performs the scale operation on the calling `Mat2` object, scaling it by a `Vec2<f32>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use gamemath::{Mat2, Vec2};
    ///
    /// let mut m = Mat2::identity();
    ///
    /// m.scale(Vec2::new(5.0, 2.0));
    ///
    /// assert_eq!(m, ((5.0, 0.0),
    ///                (0.0, 2.0)).into());
    /// ```
    pub fn scale(&mut self, factor: Vec2<f32>) {
        *self = self.scaled(factor);
    }
}

impl Default for Mat2 {
    fn default() -> Mat2 {
        ((1.0, 0.0), (0.0, 1.0)).into()
    }
}

impl From<f32> for Mat2 {
    fn from(value: f32) -> Mat2 {
        Mat2 {
            rows: [
                (value, 0.0).into(),
                (0.0, value).into(),
            ],
        }
    }
}

impl From<(Row, Row)> for Mat2 {
    fn from(tuple: (Row, Row)) -> Mat2 {
        Mat2 {
            rows: [tuple.0.into(), tuple.1.into()],
        }
    }
}

impl From<InlineMat2> for Mat2 {
    fn from(tuple: InlineMat2) -> Mat2 {
        Mat2 {
            rows: [
                (tuple.0, tuple.1).into(),
                (tuple.2, tuple.3).into(),
            ],
        }
    }
}

impl From<[[f32; 2]; 2]> for Mat2 {
    fn from(slice: [[f32; 2]; 2]) -> Mat2 {
        Mat2 {
            rows: [slice[0].into(), slice[1].into()],
        }
    }
}

impl From<[f32; 4]> for Mat2 {
    fn from(slice: [f32; 4]) -> Mat2 {
        Mat2 {
            rows: [
                (slice[0], slice[1]).into(),
                (slice[2], slice[3]).into(),
            ],
        }
    }
}

impl From<[Vec2<f32>; 2]> for Mat2 {
    fn from(slice: [Vec2<f32>; 2]) -> Mat2 {
        Mat2 {
            rows: [slice[0], slice[1]],
        }
    }
}

impl From<(Vec2<f32>, Vec2<f32>, Vec2<f32>)> for Mat2 {
    fn from(tuple: (Vec2<f32>, Vec2<f32>, Vec2<f32>)) -> Mat2 {
        Mat2 {
            rows: [tuple.0, tuple.1],
        }
    }
}

impl std::ops::Index<usize> for Mat2 {
    type Output = Vec2<f32>;

    fn index(&self, index: usize) -> &Vec2<f32> {
        match index {
            0 => &self.rows[0],
            1 => &self.rows[1],
            _ => panic!("Mat2 index out of range!"),
        }
    }
}

impl std::ops::IndexMut<usize> for Mat2 {
    fn index_mut(&mut self, index: usize) -> &mut Vec2<f32> {
        match index {
            0 => &mut self.rows[0],
            1 => &mut self.rows[1],
            _ => panic!("Mat2 index out of range!"),
        }
    }
}

impl std::ops::Index<(usize, usize)> for Mat2 {
    type Output = f32;

    fn index(&self, index: (usize, usize)) -> &f32 {
        &self.rows[index.0][index.1]
    }
}

impl std::ops::IndexMut<(usize, usize)> for Mat2 {
    fn index_mut(&mut self, index: (usize, usize)) -> &mut f32 {
        &mut self.rows[index.0][index.1]
    }
}

impl std::ops::Add for Mat2 {
    type Output = Mat2;

    fn add(self, right: Mat2) -> Mat2 {
        Mat2 {
            rows: [self[0] + right[0], self[1] + right[1]],
        }
    }
}

impl std::ops::AddAssign for Mat2 {
    fn add_assign(&mut self, right: Mat2) {
        *self = *self + right;
    }
}

impl std::ops::Sub for Mat2 {
    type Output = Mat2;

    fn sub(self, right: Mat2) -> Mat2 {
        Mat2 {
            rows: [self[0] - right[0], self[1] - right[1]],
        }
    }
}

impl std::ops::SubAssign for Mat2 {
    fn sub_assign(&mut self, right: Mat2) {
        *self = *self - right;
    }
}

impl std::ops::Mul<Vec2<f32>> for Mat2 {
    type Output = Vec2<f32>;

    fn mul(self, vec: Vec2<f32>) -> Vec2<f32> {
        (self[0].dot(vec), self[1].dot(vec)).into()
    }
}

impl std::ops::Mul<Mat2> for Mat2 {
    type Output = Mat2;

    fn mul(self, right: Mat2) -> Mat2 {
        let mut result: Mat2 = 0.0.into();

        result[0][0] =
            self[0][0] * right[0][0] + self[1][0] * right[0][1];
        result[0][1] =
            self[0][1] * right[0][0] + self[1][1] * right[0][1];
        
        result[1][0] =
            self[0][0] * right[1][0] + self[1][0] * right[1][1];
        result[1][1] =
            self[0][1] * right[1][0] + self[1][1] * right[1][1];

        result
    }
}

impl std::ops::MulAssign<Mat2> for Mat2 {
    fn mul_assign(&mut self, right: Mat2) {
        *self = *self * right;
    }
}