1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright (c) 2020 Timo Savola.
// Use of this source code is governed by the MIT
// license that can be found in the LICENSE file.

//! I/O streams.

use crate::core::{self, Stream, StreamFlags};

pub use crate::core::StreamErrorCode as ErrorCode;

pub mod buf;

/// Data subscriber and receiver.
pub trait Recv {
    /// Receive data packets repeatedly.  Returns a future.
    ///
    /// The initial reception capacity determines the maximum data packet size
    /// which the first receptor invocation may receive.  Subsequent reception
    /// capacity is the sum of the unused capacity (subscribed minus received)
    /// and the number returned by the receptor.
    ///
    /// The receptor must be prepared to handle as much data as is subscribed
    /// at any given time.
    ///
    /// The call returns once the stream is closed or the reception capacity
    /// drops to zero.
    fn recv<R>(&mut self, capacity: usize, receptor: R) -> future::Recv<R>
    where
        R: Fn(&[u8], i32) -> usize + Unpin;
}

/// Data writer.
pub trait Write {
    /// Write part of a byte slice.  Returns a future.
    fn write<'a>(&'a mut self, data: &'a [u8]) -> future::Write;

    /// Write part of a byte slice.  Returns a future.
    fn write_note<'a>(&'a mut self, data: &'a [u8], note: i32) -> future::Write;

    /// Write a whole byte slice.  Returns a future.
    fn write_all<'a>(&'a mut self, data: &'a [u8]) -> future::WriteAll;
}

/// Stream closer.
pub trait Close {
    /// Close a stream.  Returns a future.
    fn close(&mut self) -> future::Close;
}

pub mod future {
    pub use crate::core::StreamCloseFuture as Close;
    pub use crate::core::StreamRecvFuture as Recv;
    pub use crate::core::StreamWriteAllFuture as WriteAll;
    pub use crate::core::StreamWriteFuture as Write;
}

/// Bidirectional stream.
pub struct RecvWriteStream {
    s: Option<Stream>,
}

impl RecvWriteStream {
    pub(crate) fn new(s: Option<Stream>) -> Self {
        Self { s }
    }

    /// Split the stream into unidirectional parts.
    pub fn split(mut self) -> (RecvStream, WriteStream) {
        let s = self.s.take();
        (RecvStream::new(s.clone()), WriteStream::new(s))
    }

    /// Split the stream into unidirectional parts which can be closed
    /// asynchronously.  The single CloseStream closes both directions.
    pub fn split3(mut self) -> (RecvOnlyStream, WriteOnlyStream, CloseStream) {
        let s = self.s.take();
        (
            RecvOnlyStream::new(s.clone()),
            WriteOnlyStream::new(s.clone()),
            CloseStream::new(s, core::STREAM_SELF_FLOW | core::STREAM_SELF_DATA),
        )
    }
}

impl Default for RecvWriteStream {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl Recv for RecvWriteStream {
    fn recv<R>(&mut self, capacity: usize, receptor: R) -> future::Recv<R>
    where
        R: Fn(&[u8], i32) -> usize + Unpin,
    {
        future::Recv::new(&mut self.s, capacity, receptor)
    }
}

impl Write for RecvWriteStream {
    fn write<'a>(&'a mut self, data: &'a [u8]) -> future::Write {
        future::Write::new(&mut self.s, data, 0)
    }

    fn write_note<'a>(&'a mut self, data: &'a [u8], note: i32) -> future::Write {
        future::Write::new(&mut self.s, data, note)
    }

    fn write_all<'a>(&'a mut self, data: &'a [u8]) -> future::WriteAll {
        future::WriteAll::new(&mut self.s, data)
    }
}

impl Close for RecvWriteStream {
    fn close(&mut self) -> future::Close {
        future::Close::new(
            self.s.take(),
            core::STREAM_SELF_FLOW | core::STREAM_SELF_DATA,
            core::STREAM_PEER_DATA | core::STREAM_PEER_FLOW,
        )
    }
}

impl Drop for RecvWriteStream {
    fn drop(&mut self) {
        core::drop_stream(
            self.s.take(),
            core::STREAM_SELF_FLOW | core::STREAM_SELF_DATA,
        )
    }
}

/// Input stream.
pub struct RecvStream {
    s: Option<Stream>,
}

impl RecvStream {
    pub(crate) fn new(s: Option<Stream>) -> Self {
        Self { s }
    }

    /// Detach the closing functionality.
    pub fn split(mut self) -> (RecvOnlyStream, CloseStream) {
        let s = self.s.take();
        (
            RecvOnlyStream::new(s.clone()),
            CloseStream::new(s, core::STREAM_SELF_FLOW),
        )
    }
}

impl Default for RecvStream {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl From<RecvWriteStream> for RecvStream {
    fn from(stream: RecvWriteStream) -> Self {
        let (r, _) = stream.split();
        r
    }
}

impl Recv for RecvStream {
    fn recv<R>(&mut self, capacity: usize, receptor: R) -> future::Recv<R>
    where
        R: Fn(&[u8], i32) -> usize + Unpin,
    {
        future::Recv::new(&mut self.s, capacity, receptor)
    }
}

impl Close for RecvStream {
    fn close(&mut self) -> future::Close {
        future::Close::new(
            self.s.take(),
            core::STREAM_SELF_FLOW,
            core::STREAM_PEER_DATA,
        )
    }
}

impl Drop for RecvStream {
    fn drop(&mut self) {
        core::drop_stream(self.s.take(), core::STREAM_SELF_FLOW)
    }
}

/// Input stream which can be closed asynchronously.
pub struct RecvOnlyStream {
    s: Option<Stream>,
}

impl RecvOnlyStream {
    fn new(s: Option<Stream>) -> Self {
        Self { s }
    }
}

impl Default for RecvOnlyStream {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl Recv for RecvOnlyStream {
    fn recv<R>(&mut self, capacity: usize, receptor: R) -> future::Recv<R>
    where
        R: Fn(&[u8], i32) -> usize + Unpin,
    {
        future::Recv::new(&mut self.s, capacity, receptor)
    }
}

impl Drop for RecvOnlyStream {
    fn drop(&mut self) {
        core::drop_stream(self.s.take(), core::STREAM_SELF_FLOW)
    }
}

/// Output stream.
pub struct WriteStream {
    s: Option<Stream>,
}

impl WriteStream {
    pub(crate) fn new(s: Option<Stream>) -> Self {
        Self { s }
    }

    /// Detach the closing functionality.
    pub fn split(mut self) -> (WriteOnlyStream, CloseStream) {
        let s = self.s.take();
        (
            WriteOnlyStream::new(s.clone()),
            CloseStream::new(s, core::STREAM_SELF_DATA),
        )
    }
}

impl Default for WriteStream {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl From<RecvWriteStream> for WriteStream {
    fn from(stream: RecvWriteStream) -> Self {
        let (_, w) = stream.split();
        w
    }
}

impl Write for WriteStream {
    fn write<'a>(&'a mut self, data: &'a [u8]) -> future::Write {
        future::Write::new(&mut self.s, data, 0)
    }

    fn write_note<'a>(&'a mut self, data: &'a [u8], note: i32) -> future::Write {
        future::Write::new(&mut self.s, data, note)
    }

    fn write_all<'a>(&'a mut self, data: &'a [u8]) -> future::WriteAll {
        future::WriteAll::new(&mut self.s, data)
    }
}

impl Close for WriteStream {
    fn close(&mut self) -> future::Close {
        future::Close::new(
            self.s.take(),
            core::STREAM_SELF_DATA,
            core::STREAM_PEER_FLOW,
        )
    }
}

impl Drop for WriteStream {
    fn drop(&mut self) {
        core::drop_stream(self.s.take(), core::STREAM_SELF_DATA)
    }
}

/// Output stream which can be closed asynchronously.
pub struct WriteOnlyStream {
    s: Option<Stream>,
}

impl WriteOnlyStream {
    fn new(s: Option<Stream>) -> Self {
        Self { s }
    }
}

impl Default for WriteOnlyStream {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl Write for WriteOnlyStream {
    fn write<'a>(&'a mut self, data: &'a [u8]) -> future::Write {
        future::Write::new(&mut self.s, data, 0)
    }

    fn write_note<'a>(&'a mut self, data: &'a [u8], note: i32) -> future::Write {
        future::Write::new(&mut self.s, data, note)
    }

    fn write_all<'a>(&'a mut self, data: &'a [u8]) -> future::WriteAll {
        future::WriteAll::new(&mut self.s, data)
    }
}

impl Drop for WriteOnlyStream {
    fn drop(&mut self) {
        core::drop_stream(self.s.take(), core::STREAM_SELF_DATA)
    }
}

/// Used to close associated `RecvOnlyStream` and/or `WriteOnlyStream`.
pub struct CloseStream {
    s: Option<Stream>,
    how: StreamFlags,
}

impl CloseStream {
    fn new(s: Option<Stream>, how: StreamFlags) -> Self {
        Self { s, how }
    }
}

impl Default for CloseStream {
    fn default() -> Self {
        Self::new(Default::default(), 0)
    }
}

impl Close for CloseStream {
    fn close(&mut self) -> future::Close {
        let wait = self.how << 2; // STREAM_SELF -> STREAM_PEER
        future::Close::new(self.s.take(), self.how, wait)
    }
}

impl Drop for CloseStream {
    fn drop(&mut self) {
        core::drop_stream(self.s.take(), self.how)
    }
}