1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// Copyright (c) Facebook, Inc. and its affiliates
// SPDX-License-Identifier: MIT OR Apache-2.0

//! # Generic Automatic Differentiation (GAD)
//!
//! This library provides automatic differentiation by backward propagation (aka.
//! "autograd") in Rust. It was designed to allow first-class user extensions (e.g. with
//! new array types or new operators) and to support multiples modes of execution with
//! minimal overhead.
//!
//! The following modes of execution are currently supported for all library-defined operators:
//! * first-order differentiation,
//! * higher-order differentiation,
//! * forward-only evaluation, and
//! * dimension checking.
//!
//! ## Design Principles
//!
//! The core of this library consists of a tape-based implementation of [automatic
//! differentiation in reverse
//! mode](https://en.wikipedia.org/wiki/Automatic_differentiation#Reverse_accumulation).
//!
//! We have chosen to prioritize idiomatic Rust in order to make this
//! library as re-usable as possible:
//!
//! * The core differentiation algorithm does not use unsafe Rust features or interior
//! mutability (e.g. `RefCell`). All differentiable expressions explicitly mutate a tape
//! when they are constructed. (Below, the tape variable is noted `graph` or `g`.)
//!
//! * Fallible operations never panic and always return a `Result` type. For instance, the
//! sum of two arrays `x` and `y` may be written `g.add(&x, &y)?`.
//!
//! * All structures and values implement `Send` and `Sync` to support concurrent programming.
//!
//! * Generic programming is encouraged so that user formulas can be interpreted in
//! different modes of execution (forward evaluation, dimension checking, etc) with
//! minimal overhead. (See the section below for a code example.)
//!
//! While this library is primarily motivated by machine learning applications, it is
//! meant to cover other use cases of automatic differentiation in reverse mode. In the
//! sections below, we show how a user may define new operators and add new modes of
//! execution while retaining automatic differentiability.
//!
//! ## Limitations
//!
//! * Currently, the usual syntax of operators `+`, `-`, `*`, etc is not available for
//! differentiable values. All operations are method calls of the form `g.op(x1, .. xN)`
//! (or typically `g.op(x1, .. xN)?` for fallible operations).
//!
//! * Because of a current [limitation](https://github.com/rust-lang/rust/issues/49434) of
//! the Rust borrow checker, expressions cannot be nested: `g.add(&x, &g.mul(&y, &z)?)?` must
//! be written `let v = g.mul(&y, &z)?; g.add(&x, &v)?`.
//!
//! We believe that this state of affairs could be improved in the future using Rust
//! macros. Alternatively, future extensions of the library could define a new category of
//! differentiable values that contain an implicit `RefCell` reference to a common tape
//! and provide (implicitly fallible, thread unsafe) operator traits for these values.
//!
//! ## Quick Start
//!
//! To compute gradients, we first build an expression using operations provided by a
//! fresh tape `g` of type `Graph1`. Successive algebraic operations modify the internal
//! state of `g` to track all relevant computations and enables future backward
//! propagation passes.
//!
//! We then call `g.evaluate_gradients(..)` to run a backward propagation algorithm from the
//! desired starting point and using an initial gradient value `direction`.
//!
//! Unless a one-time optimized variant `g.evaluate_gradients_once(..)` is used, backward
//! propagation with `g.evaluate_gradients(..)` does not modify `g`. This allows
//! successive (or concurrent) backward propagations to be run from different starting
//! points or with different gradient values.
//!
//! ```
//! # use gad::prelude::*;
//! # fn main() -> Result<()> {
//! // A new tape supporting first-order differentials (aka gradients)
//! let mut g = Graph1::new();
//! // Compute forward values.
//! let a = g.variable(1f32);
//! let b = g.variable(2f32);
//! let c = g.mul(&a, &b)?;
//! // Compute the derivatives of `c` relative to `a` and `b`
//! let gradients = g.evaluate_gradients(c.gid()?, 1f32)?;
//! // Read the `dc/da` component.
//! assert_eq!(*gradients.get(a.gid()?).unwrap(), 2.0);
//! # Ok(())
//! # }
//! ```
//!
//! Because `Graph1`, the type of `g`, provides algebraic operations as methods, below we
//! refer to such a type as an "algebra". GAD uses particular Rust traits to represent the
//! set of operations supported by a given algebra.
//!
//! ## Computations with Arrayfire
//!
//! The default array operations of the library are currently based on
//! [Arrayfire](https://crates.io/crates/arrayfire), a portable array library supporting GPUs
//! and JIT-compilation.
//!
//! ```
//! # #[cfg(feature = "arrayfire")] {
//! # use gad::prelude::*;
//! use arrayfire as af;
//! # fn main() -> Result<()> {
//! // A new tape supporting first-order differentials (aka gradients)
//! let mut g = Graph1::new();
//! // Compute forward values using Arrayfire arrays
//! let dims = af::Dim4::new(&[4, 3, 1, 1]);
//! let a = g.variable(af::randu::<f32>(dims));
//! let b = g.variable(af::randu::<f32>(dims));
//! let c = g.mul(&a, &b)?;
//! // Compute gradient of c
//! let direction = af::constant(1f32, dims);
//! let gradients = g.evaluate_gradients_once(c.gid()?, direction)?;
//! # Ok(())
//! # }
//! # }
//! ```
//!
//! After installing the [arrayfire library](https://arrayfire.com/download) on your
//! system, make sure to
//!
//! * select the package feature "arrayfire" in your build file `Cargo.toml` (e.g. `gad =
//! { version = "XX", features = ["arrayfire"]}`),
//!
//! * run `cargo` with the environment variable `AF_PATH` set appropriately (e.g. after
//! `export AF_PATH=/usr/local`).
//!
//! ## Using Generics for Forward Evaluation and Fast Dimension Checking
//!
//! The algebra `Graph1` used in the examples above is one choice amongst several
//! "default" algebras offered by the library:
//!
//! * We also provide a special algebra `Eval` for forward evaluation, that is, running
//! only primitive operations and dimension checks (no tape, no gradients);
//!
//! * Similarly, using the algebra `Check` will check dimensions without
//! evaluating or allocating any array data;
//!
//! * Finally, differentiation is obtained using `Graph1` for first-order differentials,
//! and `GraphN` for higher-order differentials.
//!
//! Users are encouraged to program formulas in a generic way so that any of the default
//! algebras can be chosen.
//!
//! The following example illustrates such a programming style in the case of array
//! operations:
//! ```
//! # #[cfg(feature = "arrayfire")] {
//! # use gad::prelude::*;
//! use arrayfire as af;
//!
//! fn get_value<A>(g: &mut A) -> Result<<A as AfAlgebra<f32>>::Value>
//! where A : AfAlgebra<f32>
//! {
//!     let dims = af::Dim4::new(&[4, 3, 1, 1]);
//!     let a = g.variable(af::randu::<f32>(dims));
//!     let b = g.variable(af::randu::<f32>(dims));
//!     g.mul(&a, &b)
//! }
//!
//! # fn main() -> Result<()> {
//! // Direct evaluation. The result type is a primitive (non-differentiable) value.
//! let mut g = Eval::default();
//! let c : af::Array<f32> = get_value(&mut g)?;
//!
//! // Fast dimension-checking. The result type is a dimension.
//! let mut g = Check::default();
//! let d : af::Dim4 = get_value(&mut g)?;
//! assert_eq!(c.dims(), d);
//! # Ok(())
//! # }
//! # }
//! ```
//!
//! ## Higher-Order Differentials
//!
//! Higher-order differentials are computed using the algebra `GraphN`. In this case, gradients
//! are values whose computations is also tracked.
//!
//! ```
//! # use gad::prelude::*;
//! # fn main() -> Result<()> {
//! // A new tape supporting differentials of any order.
//! let mut g = GraphN::new();
//!
//! // Compute forward values using floats.
//! let x = g.variable(1.0f32);
//! let y = g.variable(0.4f32);
//! // z = x * y^2
//! let z = {
//!     let h = g.mul(&x, &y)?;
//!     g.mul(&h, &y)?
//! };
//! // Use short names for gradient ids.
//! let (x, y, z) = (x.gid()?, y.gid()?, z.gid()?);
//!
//! // Compute gradient.
//! let dz = g.constant(1f32);
//! let dz_d = g.compute_gradients(z, dz)?;
//! let dz_dx = dz_d.get(x).unwrap();
//!
//! // Compute some 2nd-order differentials.
//! let ddz = g.constant(1f32);
//! let ddz_dxd = g.compute_gradients(dz_dx.gid()?, ddz)?;
//! let ddz_dxdy = ddz_dxd.get(y).unwrap().data();
//! assert_eq!(*ddz_dxdy, 0.8); // 2y
//!
//! // Compute some 3rd-order differentials.
//! let dddz = g.constant(1f32);
//! let dddz_dxdyd = g.compute_gradients(ddz_dxd.get(y).unwrap().gid()?, dddz)?;
//! let dddz_dxdydy = dddz_dxdyd.get(y).unwrap().data();
//! assert_eq!(*dddz_dxdydy, 2.0);
//! # Ok(())
//! # }
//! ```
//!
//! ## Extending Automatic Differentiation
//!
//! ### Operations and algebras
//!
//! The default algebras `Eval`, `Check`, `Graph1`, `GraphN` are meant to provide
//! interchangeable sets of operations in each of the default modes of operation
//! (respectively, evaluation, dimension-checking, first-order differentiation, and
//! higher-order differentiation).
//!
//! Default operations are grouped into several traits named `*Algebra` and implemented by
//! each of the four default algebras above.
//!
//! * The special trait `CoreAlgebra<Data>` defines the mapping from underlying data (e.g.
//! array) to differentiable values. In particular, the method `fn variable(&mut self, data:
//! &Data) -> Self::Value` creates differentiable variables `x` whose gradient value can be
//! referred to later by an id written `x.gid()?` (assuming the algebra is `Graph1` or
//! `GraphN`).
//!
//! * Other traits are parameterized over one or several value types. E.g.
//!   `ArithAlgebra<Value>` provides pointwise negation, multiplication, subtraction, etc
//!   over `Value`.
//!
//! The motivation for using several `*Algebra` traits is twofold:
//!
//! * Users may define their own operations (see next paragraph).
//!
//! * Certain operations are more broadly applicable than others.
//!
//! The following example illustrates gradient computations over integers:
//! ```
//! # use gad::prelude::*;
//! # fn main() -> Result<()> {
//! let mut g = Graph1::new();
//! let a = g.variable(1i32);
//! let b = g.variable(2i32);
//! let c = g.sub(&a, &b)?;
//! assert_eq!(*c.data(), -1);
//! let gradients = g.evaluate_gradients_once(c.gid()?, 1)?;
//! assert_eq!(*gradients.get(a.gid()?).unwrap(), 1);
//! assert_eq!(*gradients.get(b.gid()?).unwrap(), -1);
//! # Ok(())
//! # }
//! ```
//!
//! ### User-defined operations
//!
//! Users may define new differentiable operations by defining their own `*Algebra` trait
//! and providing implementations to the default algebras `Eval`, `Check`, `Graph1`,
//! `GraphN`.
//!
//! In the following example, we define a new operation `square` over integers and
//! af-arrays and add support for first-order differentials:
//! ```
//! # use gad::prelude::*;
//! # #[cfg(feature = "arrayfire")]
//! use arrayfire as af;
//!
//! pub trait UserAlgebra<Value> {
//!     fn square(&mut self, v: &Value) -> Result<Value>;
//! }
//!
//! impl UserAlgebra<i32> for Eval
//! {
//!     fn square(&mut self, v: &i32) -> Result<i32> { Ok(v * v) }
//! }
//!
//! # #[cfg(feature = "arrayfire")] {
//! impl<T> UserAlgebra<af::Array<T>> for Eval
//! where
//!     T: af::HasAfEnum + af::ImplicitPromote<T, Output = T>
//! {
//!     fn square(&mut self, v: &af::Array<T>) -> Result<af::Array<T>> { Ok(v * v) }
//! }
//! # }
//!
//! impl<D> UserAlgebra<Value<D>> for Graph1
//! where
//!     Eval: CoreAlgebra<D, Value = D>
//!         + UserAlgebra<D>
//!         + ArithAlgebra<D>
//!         + LinkedAlgebra<Value<D>, D>,
//!     D: HasDims + Clone + 'static + Send + Sync,
//!     D::Dims: PartialEq + std::fmt::Debug + Clone + 'static + Send + Sync,
//! {
//!     fn square(&mut self, v: &Value<D>) -> Result<Value<D>> {
//!         let result = self.eval().square(v.data())?;
//!         let value = self.make_node(result, vec![v.input()], {
//!             let v = v.clone();
//!             move |graph, store, gradient| {
//!                 if let Some(id) = v.id() {
//!                     let c = graph.link(&v);
//!                     let grad1 = graph.mul(&gradient, c)?;
//!                     let grad2 = graph.mul(c, &gradient)?;
//!                     let grad = graph.add(&grad1, &grad2)?;
//!                     store.add_gradient(graph, id, &grad)?;
//!                 }
//!                 Ok(())
//!             }
//!         });
//!         Ok(value)
//!     }
//! }
//!
//! fn main() -> Result<()> {
//!   let mut g = Graph1::new();
//!   let a = g.variable(3i32);
//!   let b = g.square(&a)?;
//!   assert_eq!(*b.data(), 9);
//!   let gradients = g.evaluate_gradients_once(b.gid()?, 1)?;
//!   assert_eq!(*gradients.get(a.gid()?).unwrap(), 6);
//!   Ok(())
//! }
//! ```
//!
//! The implementation for `GraphN` would be identical to `Graph1`. We have omitted
//! dimension-checking for simplicity. We refer readers to the test files of the library
//! for a more complete example.
//!
//! ### User-defined algebras
//!
//! Users may define new "evaluation" algebras (similar to `Eval`) by implementing a
//! subset of operation traits that includes `CoreAlgebra<Data, Value=Data>` for each
//! supported `Data` types.
//!
//! An evaluation-only algebra can be turned into algebras supporting differentiation
//! (similar to `Graph1` and `GraphN`) using the `Graph` construction provided by the
//! library.
//!
//! The following example illustrates how to define a new evaluation algebra `SymEval`
//! then deduce its counterpart `SymGraph1`:
//! ```
//! # use gad::prelude::*;
//! # use std::sync::Arc;
//! /// A custom algebra for forward-only symbolic evaluation.
//! #[derive(Clone, Default)]
//! struct SymEval;
//!
//! /// Symbolic expressions of type T.
//! #[derive(Debug, PartialEq)]
//! enum Exp_<T> {
//!     Num(T),
//!     Neg(Exp<T>),
//!     Add(Exp<T>, Exp<T>),
//!     Mul(Exp<T>, Exp<T>),
//!     // ...
//! #    One,
//! #    Zero,
//! }
//!
//! type Exp<T> = Arc<Exp_<T>>;
//!
//! impl<T> CoreAlgebra<Exp<T>> for SymEval {
//!     type Value = Exp<T>;
//!     fn variable(&mut self, data: Exp<T>) -> Self::Value {
//!         data
//!     }
//!     fn constant(&mut self, data: Exp<T>) -> Self::Value {
//!         data
//!     }
//!     fn add(&mut self, v1: &Self::Value, v2: &Self::Value) -> Result<Self::Value> {
//!         Ok(Arc::new(Exp_::Add(v1.clone(), v2.clone())))
//!     }
//! }
//!
//! impl<T> ArithAlgebra<Exp<T>> for SymEval {
//!     fn neg(&mut self, v: &Exp<T>) -> Exp<T> {
//!         Arc::new(Exp_::Neg(v.clone()))
//!     }
//!     fn sub(&mut self, v1: &Exp<T>, v2: &Exp<T>) -> Result<Exp<T>> {
//!         let v2 = self.neg(v2);
//!         Ok(Arc::new(Exp_::Add(v1.clone(), v2)))
//!     }
//!     fn mul(&mut self, v1: &Exp<T>, v2: &Exp<T>) -> Result<Exp<T>> {
//!         Ok(Arc::new(Exp_::Mul(v1.clone(), v2.clone())))
//!     }
//!     // ...
//! #    fn zeros(&mut self, _v: &Exp<T>) -> Exp<T> {
//! #        Arc::new(Exp_::Zero)
//! #    }
//! #    fn ones(&mut self, _v: &Exp<T>) -> Exp<T> {
//! #        Arc::new(Exp_::One)
//! #    }
//! }
//!
//! // No dimension checks.
//! impl<T> HasDims for Exp_<T> {
//!     type Dims = ();
//!     fn dims(&self) {}
//! }
//!
//! impl<T: std::fmt::Display> std::fmt::Display for Exp_<T> {
//!     // ...
//! #   fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
//! #       use Exp_::*;
//! #       match self {
//! #           Zero => write!(f, "0"),
//! #           One => write!(f, "1"),
//! #           Num(x) => write!(f, "{}", x),
//! #           Neg(e) => write!(f, "(-{})", *e),
//! #           Add(e1, e2) => write!(f, "({}+{})", *e1, *e2),
//! #           Mul(e1, e2) => write!(f, "{}{}", *e1, *e2),
//! #       }
//! #   }
//! }
//!
//! /// Apply `graph` module to Derive an algebra supporting gradients.
//! type SymGraph1 = Graph<Config1<SymEval>>;
//!
//! fn main() -> Result<()> {
//!     let mut g = SymGraph1::new();
//!     let a = g.variable(Arc::new(Exp_::Num("a")));
//!     let b = g.variable(Arc::new(Exp_::Num("b")));
//!     let c = g.mul(&a, &b)?;
//!     let d = g.mul(&a, &c)?;
//!     assert_eq!(format!("{}", d.data()), "aab");
//!     let gradients = g.evaluate_gradients_once(d.gid()?, Arc::new(Exp_::Num("1")))?;
//!     assert_eq!(format!("{}", gradients.get(a.gid()?).unwrap()), "(1ab+a1b)");
//!     assert_eq!(format!("{}", gradients.get(b.gid()?).unwrap()), "aa1");
//!     Ok(())
//! }
//! ```

/// Convenient prelude.
/// For testing and external use only.
pub mod prelude {
    pub use crate::{
        analytic::AnalyticAlgebra,
        arith::ArithAlgebra,
        array::ArrayAlgebra,
        array_compare::ArrayCompareAlgebra,
        compare::CompareAlgebra,
        const_arith::ConstArithAlgebra,
        core::{CoreAlgebra, HasDims},
        error::{check_equal_dimensions, Error, Result},
        func_name,
        graph::{Config1, ConfigN, Graph, Value},
        linked::LinkedAlgebra,
        matrix::{MatProp, MatrixAlgebra},
        net::{
            CheckNet as _, ConstantData, EvalNet as _, HasGradientId, HasGradientReader, InputData,
            Net, WeightData, WeightOps,
        },
        net_ext::{DiffNet as _, SingleOutputNet as _},
        store::{GradientId, GradientReader, GradientStore},
        Check, Eval, Graph1, GraphN, Number,
    };
    pub use thiserror::Error as _;

    #[cfg(feature = "arrayfire")]
    pub use crate::arrayfire::{testing, AfAlgebra, Float, FullAlgebra};
}

/// Error and result types.
#[macro_use]
pub mod error;

/// Provide algebras supporting higher-order, tape-based auto-differentiation.
pub mod graph;

/// Core operations.
pub mod core;

/// Pointwise analytic functions (cos, sin, log, exp, pow, sqrt, ..)
pub mod analytic;

/// Pointwise arithmetic operations.
pub mod arith;

/// Pointwise arithmetic operations with a constant value.
pub mod const_arith;

/// Pointwise comparison operations.
pub mod compare;

/// Operation to propagate gradients in the case of high-order differentials.
pub mod linked;

/// Gradient storage for the `graph` module.
pub mod store;

/// Array operations.
pub mod array;

/// Array operations with comparisons.
pub mod array_compare;

/// Operations on matrix.
pub mod matrix;

/// Neural networks.
pub mod net;

/// Network extensions.
pub mod net_ext;

/// Additional definitions for Arrayfire.
#[cfg(feature = "arrayfire")]
pub mod arrayfire;

/// The default algebra that only checks dimensions.
#[derive(Clone, Default)]
pub struct Check;

/// The default algebra that only computes forward values.
#[derive(Clone, Default)]
pub struct Eval {
    check: Check,
}

/// The default algebra that allows computing first-order differentials (aka gradients).
pub type Graph1 = graph::Graph<graph::Config1<Eval>>;

/// The default algebra that allows computing higher-order differentials.
pub type GraphN = graph::Graph<graph::ConfigN<Eval>>;

impl Eval {
    /// Access the underlying default "Check" algebra.
    #[inline]
    pub fn check(&mut self) -> &mut Check {
        &mut self.check
    }
}

mod private {
    /// "Sealed" trait used to avoid conflicting trait implementations.
    pub trait Reserved {}

    impl Reserved for i8 {}
    impl Reserved for i16 {}
    impl Reserved for i32 {}
    impl Reserved for i64 {}
    impl Reserved for f32 {}
    impl Reserved for f64 {}
    impl Reserved for num::complex::Complex<f32> {}
    impl Reserved for num::complex::Complex<f64> {}
    impl Reserved for num::Rational32 {}
    impl Reserved for num::Rational64 {}
}

/// Supported numbers for default algebras.
pub trait Number:
    private::Reserved
    + num::Num
    + std::ops::Neg<Output = Self>
    + std::ops::AddAssign
    + std::fmt::Debug
    + serde::Serialize
    + serde::de::DeserializeOwned
    + 'static
    + Clone
    + Copy
    + Send
    + Sync
{
}
impl Number for i8 {}
impl Number for i16 {}
impl Number for i32 {}
impl Number for i64 {}
impl Number for f32 {}
impl Number for f64 {}
impl Number for num::complex::Complex<f32> {}
impl Number for num::complex::Complex<f64> {}
impl Number for num::Rational32 {}
impl Number for num::Rational64 {}

#[cfg(test)]
mod testing {
    use super::*;
    trait Test: Sync + Send + Clone + Default {}
    impl Test for Graph1 {}
    impl Test for GraphN {}
}