1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright (c) Facebook, Inc. and its affiliates
// SPDX-License-Identifier: MIT OR Apache-2.0

use crate::{
    core::{CoreAlgebra, HasDims},
    error::Result,
    graph::{Config1, ConfigN, Graph, Value},
    linked::LinkedAlgebra,
    store::GradientStore,
};

/// Whether a matrix should be transposed and/or conjugated before applying a matrix operation.
#[derive(Default, Debug, Copy, Clone, Eq, PartialEq)]
pub struct MatProp {
    pub transposed: bool,
    pub conjugated: bool,
}

/// Matric operations such as multiplication and transposition.
pub trait MatrixAlgebra<Value> {
    /// Multiplication of two matrices after some optional transpositions.
    fn matmul(&mut self, v1: &Value, v2: &Value, prop1: MatProp, prop2: MatProp) -> Result<Value>;

    /// Transpose (and optionally conjuguate) a matrix.
    fn transpose(&mut self, v: &Value, conjugate: bool) -> Result<Value>;

    /// Non-transposed multiplication of two matrices.
    #[inline]
    fn matmul_nn(&mut self, v1: &Value, v2: &Value) -> Result<Value> {
        self.matmul(v1, v2, MatProp::default(), MatProp::default())
    }
}

#[cfg(feature = "arrayfire")]
mod af_arith {
    use super::*;
    use crate::{arrayfire::Float, error::Error, Check, Eval};
    use arrayfire as af;

    impl<T> MatrixAlgebra<af::Array<T>> for Eval
    where
        T: Float,
    {
        #[inline]
        fn matmul(
            &mut self,
            v1: &af::Array<T>,
            v2: &af::Array<T>,
            prop1: MatProp,
            prop2: MatProp,
        ) -> Result<af::Array<T>> {
            self.check().matmul(&v1.dims(), &v2.dims(), prop1, prop2)?;
            Ok(af::matmul(v1, v2, prop1.into(), prop2.into()))
        }

        #[inline]
        fn transpose(&mut self, v: &af::Array<T>, conjugate: bool) -> Result<af::Array<T>> {
            self.check().transpose(&v.dims(), conjugate)?;
            Ok(af::transpose(v, conjugate))
        }
    }

    impl From<MatProp> for af::MatProp {
        fn from(p: MatProp) -> af::MatProp {
            match p {
                MatProp {
                    transposed: false,
                    conjugated: false,
                } => af::MatProp::NONE,
                MatProp {
                    transposed: true,
                    conjugated: false,
                } => af::MatProp::TRANS,
                MatProp {
                    transposed: false,
                    conjugated: true,
                } => af::MatProp::CONJ,
                MatProp {
                    transposed: true,
                    conjugated: true,
                } => af::MatProp::CTRANS,
            }
        }
    }

    impl MatrixAlgebra<af::Dim4> for Check {
        #[inline]
        fn matmul(
            &mut self,
            v1: &af::Dim4,
            v2: &af::Dim4,
            prop1: MatProp,
            prop2: MatProp,
        ) -> Result<af::Dim4> {
            let tv1 = if prop1.transposed {
                self.transpose(v1, false)?
            } else {
                *v1
            };
            let tv2 = if prop2.transposed {
                self.transpose(v2, false)?
            } else {
                *v2
            };
            if tv1[1] != tv2[0] {
                return Err(Error::dimensions(func_name!(), &[v1, v2]));
            }
            let r = match (tv1[2], tv1[3], tv2[2], tv2[3]) {
                (1, 1, a, b) | (a, b, 1, 1) => [tv1[0], tv2[1], a, b],
                (a, b, c, d) if a == c && b == d => [tv1[0], tv2[1], a, b],
                _ => {
                    return Err(Error::dimensions(func_name!(), &[v1, v2]));
                }
            };
            Ok(af::Dim4::new(&r))
        }

        #[inline]
        fn transpose(&mut self, v: &af::Dim4, _conjugate: bool) -> Result<af::Dim4> {
            if (v[2], v[3]) != (1, 1) {
                Err(Error::dimensions(func_name!(), &[v]))
            } else {
                Ok(af::Dim4::new(&[v[1], v[0], 1, 1]))
            }
        }
    }

    #[test]
    fn test_af_matprop() {
        let p = MatProp::new();
        assert_eq!(af::MatProp::from(p), af::MatProp::NONE);
        assert_eq!(af::MatProp::from(p.transpose()), af::MatProp::TRANS);
        assert_eq!(af::MatProp::from(p.conjugate()), af::MatProp::CONJ);
        assert_eq!(
            af::MatProp::from(p.transpose().conjugate()),
            af::MatProp::CTRANS
        );
    }
}

macro_rules! impl_graph {
    ($config:ident) => {
        impl<D, E, Dims> MatrixAlgebra<Value<D>> for Graph<$config<E>>
        where
            E: Default
                + Clone
                + CoreAlgebra<D, Value = D>
                + LinkedAlgebra<Value<D>, D>
                + MatrixAlgebra<D>,
            D: HasDims<Dims = Dims> + Clone + 'static + Send + Sync,
            Dims: PartialEq + std::fmt::Debug + Clone + 'static + Send + Sync,
        {
            fn matmul(
                &mut self,
                v1: &Value<D>,
                v2: &Value<D>,
                prop1: MatProp,
                prop2: MatProp,
            ) -> Result<Value<D>> {
                let result = self.eval().matmul(v1.data(), v2.data(), prop1, prop2)?;
                let value = self.make_node(result, vec![v1.input(), v2.input()], {
                    let v1 = v1.clone();
                    let v2 = v2.clone();
                    move |graph, store, gradient| {
                        if let Some(id) = v1.id() {
                            let c2 = graph.link(&v2);
                            let grad = graph.matmul(&gradient, c2, prop1, prop2.transpose())?;
                            store.add_gradient(graph, id, &grad)?;
                        }
                        if let Some(id) = v2.id() {
                            let c1 = graph.link(&v1);
                            let grad = graph.matmul(c1, &gradient, prop1.transpose(), prop2)?;
                            store.add_gradient(graph, id, &grad)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }

            fn transpose(&mut self, v: &Value<D>, conjugate: bool) -> Result<Value<D>> {
                let result = self.eval().transpose(v.data(), conjugate)?;
                let value = self.make_node(result, vec![v.input()], {
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let grad = graph.transpose(&gradient, conjugate)?;
                            store.add_gradient(graph, id, &grad)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }
        }
    };
}

impl_graph!(Config1);
impl_graph!(ConfigN);

impl MatProp {
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    pub fn transpose(self) -> Self {
        Self {
            transposed: !self.transposed,
            conjugated: self.conjugated,
        }
    }

    pub fn conjugate(self) -> Self {
        Self {
            transposed: self.transposed,
            conjugated: !self.conjugated,
        }
    }
}

#[test]
fn test_matprop() {
    let p = MatProp::new();
    assert!(p.transpose().transposed);
    assert_eq!(p.transpose().transpose(), p);
    assert!(p.conjugate().conjugated);
}