1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Copyright (c) Facebook, Inc. and its affiliates
// SPDX-License-Identifier: MIT OR Apache-2.0

use crate::{
    core::{CoreAlgebra, HasDims},
    error::Result,
    graph::{Config1, ConfigN, Graph, Value},
    linked::LinkedAlgebra,
    store::GradientStore,
};

/// Array operations.
pub trait ArrayAlgebra<Value> {
    type Dims;
    type Scalar;

    /// Re-shape the input into a single dimension array.
    fn flat(&mut self, v: &Value) -> Value;

    /// Re-shape the input into an array of the given dimensions.
    fn moddims(&mut self, v: &Value, dims: Self::Dims) -> Result<Value>;

    /// Repeats the input to match the given shape.
    fn tile_as(&mut self, v: &Value, dims: Self::Dims) -> Result<Value>;

    /// Sums some of the dimension of the input to fit the given shape.
    fn sum_as(&mut self, v: &Value, dims: Self::Dims) -> Result<Value>;

    /// Fill an array of the given shape with the given scalar value.
    fn constant_as(&mut self, v: &Self::Scalar, dims: Self::Dims) -> Value;

    /// Read the scalar value in a one-element array.
    fn as_scalar(&mut self, v: &Value) -> Result<Self::Scalar>;

    /// Multiply the array element-wise by the given scalar.
    fn scale(&mut self, lambda: &Self::Scalar, v: &Value) -> Value;

    /// Compute the dot-product of two arrays of the same shape.
    fn dot(&mut self, v1: &Value, v2: &Value) -> Result<Self::Scalar>;

    /// Compute the L2-norm of an array.
    fn norm2(&mut self, v: &Value) -> Self::Scalar {
        self.dot(v, v).expect("norm2 should not fail")
    }
}

#[cfg(feature = "arrayfire")]
mod af_arith {
    use crate::{
        array::ArrayAlgebra,
        arrayfire::Float,
        error::{check_equal_dimensions, Error, Result},
        Check, Eval,
    };
    use arrayfire as af;

    impl<T> ArrayAlgebra<af::Array<T>> for Eval
    where
        T: Float,
    {
        type Dims = af::Dim4;
        type Scalar = T;

        #[inline]
        fn flat(&mut self, v: &af::Array<T>) -> af::Array<T> {
            af::flat(v)
        }

        #[inline]
        fn moddims(&mut self, v: &af::Array<T>, dims: af::Dim4) -> Result<af::Array<T>> {
            self.check().moddims(&v.dims(), dims)?;
            Ok(af::moddims(v, dims))
        }

        #[inline]
        fn tile_as(&mut self, v: &af::Array<T>, rdims: af::Dim4) -> Result<af::Array<T>> {
            self.check().tile_as(&v.dims(), rdims)?;
            let vdims = v.dims();
            let mut tdims = [1u64; 4];
            for i in 0..4 {
                tdims[i] = rdims[i] / vdims[i];
            }
            Ok(af::tile(&v, af::Dim4::new(&tdims)))
        }

        #[inline]
        fn sum_as(&mut self, v: &af::Array<T>, rdims: af::Dim4) -> Result<af::Array<T>> {
            self.check().sum_as(&v.dims(), rdims)?;
            let vdims = v.dims();
            let mut result = v.clone();
            for i in 0..4 {
                if rdims[i] == vdims[i] {
                    continue;
                }
                result = af::sum(&result, i as i32);
            }
            Ok(result)
        }

        #[inline]
        fn constant_as(&mut self, v: &T, dims: af::Dim4) -> af::Array<T> {
            af::constant(*v, dims)
        }

        #[inline]
        fn as_scalar(&mut self, v: &af::Array<T>) -> Result<T> {
            self.check().as_scalar(&v.dims())?;
            let mut res = vec![T::zero(); 1];
            v.host(&mut res);
            Ok(res[0])
        }

        #[inline]
        fn scale(&mut self, lambda: &T, v: &af::Array<T>) -> af::Array<T> {
            v * (*lambda)
        }

        #[inline]
        fn dot(&mut self, v1: &af::Array<T>, v2: &af::Array<T>) -> Result<T> {
            self.check().dot(&v1.dims(), &v2.dims())?;
            let v1 = af::flat(v1);
            let v2 = af::flat(v2);
            let mut res = vec![T::zero(); 1];
            af::dot(&v1, &v2, af::MatProp::CONJ, af::MatProp::NONE).host(&mut res);
            Ok(res[0])
        }
    }

    impl ArrayAlgebra<af::Dim4> for Check {
        type Dims = af::Dim4;
        type Scalar = ();

        #[inline]
        fn flat(&mut self, v: &af::Dim4) -> af::Dim4 {
            af::dim4!(v.elements())
        }

        #[inline]
        fn moddims(&mut self, v: &af::Dim4, dims: af::Dim4) -> Result<af::Dim4> {
            if v.elements() != dims.elements() {
                Err(Error::dimensions(func_name!(), &[v, &dims]))
            } else {
                Ok(dims)
            }
        }

        #[inline]
        fn tile_as(&mut self, v: &af::Dim4, rdims: af::Dim4) -> Result<af::Dim4> {
            let mut tdims = [1u64; 4];
            for i in 0..4 {
                if rdims[i] % v[i] != 0 {
                    return Err(Error::dimensions(func_name!(), &[v, &rdims]));
                }
                tdims[i] = rdims[i] / v[i];
            }
            Ok(rdims)
        }

        #[inline]
        fn sum_as(&mut self, v: &af::Dim4, rdims: af::Dim4) -> Result<af::Dim4> {
            for i in 0..4 {
                if rdims[i] == v[i] {
                    continue;
                }
                if rdims[i] != 1 {
                    return Err(Error::dimensions(func_name!(), &[v, &rdims]));
                }
            }
            Ok(rdims)
        }

        #[inline]
        fn constant_as(&mut self, _v: &(), dims: af::Dim4) -> af::Dim4 {
            dims
        }

        #[inline]
        fn as_scalar(&mut self, v: &af::Dim4) -> Result<()> {
            check_equal_dimensions(func_name!(), &[v, &af::dim4!(1)])?;
            Ok(())
        }

        #[inline]
        fn scale(&mut self, _lambda: &(), v: &af::Dim4) -> af::Dim4 {
            *v
        }

        #[inline]
        fn dot(&mut self, v1: &af::Dim4, v2: &af::Dim4) -> Result<()> {
            check_equal_dimensions(func_name!(), &[v1, v2])?;
            Ok(())
        }
    }
}

macro_rules! impl_graph {
    ($config:ident) => {
        impl<D, E, T, Dims> ArrayAlgebra<Value<D>> for Graph<$config<E>>
        where
            E: Default
                + Clone
                + CoreAlgebra<D, Value = D>
                + CoreAlgebra<T, Value = T>
                + LinkedAlgebra<Value<D>, D>
                + LinkedAlgebra<Value<T>, T>
                + ArrayAlgebra<D, Scalar = T, Dims = Dims>,
            Dims: PartialEq + Clone + Copy + std::fmt::Debug + Default + 'static + Send + Sync,
            D: HasDims<Dims = Dims> + Clone + 'static + Send + Sync,
            T: crate::Number,
        {
            type Dims = Dims;
            type Scalar = Value<T>;

            fn flat(&mut self, v: &Value<D>) -> Value<D> {
                let result = self.eval().flat(v.data());
                self.make_node(result, vec![v.input()], {
                    let vdims = v.data().dims();
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let x = graph.moddims(&gradient, vdims)?;
                            store.add_gradient::<D, _>(graph, id, &x)?;
                        }
                        Ok(())
                    }
                })
            }

            fn moddims(&mut self, v: &Value<D>, rdims: Dims) -> Result<Value<D>> {
                let result = self.eval().moddims(v.data(), rdims)?;
                let value = self.make_node(result, vec![v.input()], {
                    let vdims = v.data().dims();
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let x = graph.moddims(&gradient, vdims)?;
                            store.add_gradient::<D, _>(graph, id, &x)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }

            fn tile_as(&mut self, v: &Value<D>, rdims: Dims) -> Result<Value<D>> {
                let result = self.eval().tile_as(v.data(), rdims)?;
                let value = self.make_node(result, vec![v.input()], {
                    let vdims = v.data().dims();
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let x = graph.sum_as(&gradient, vdims)?;
                            store.add_gradient::<D, _>(graph, id, &x)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }

            fn sum_as(&mut self, v: &Value<D>, rdims: Dims) -> Result<Value<D>> {
                let result = self.eval().sum_as(v.data(), rdims)?;
                let value = self.make_node(result, vec![v.input()], {
                    let vdims = v.data().dims();
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let x = graph.tile_as(&gradient, vdims)?;
                            store.add_gradient::<D, _>(graph, id, &x)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }

            fn constant_as(&mut self, v: &Value<T>, dims: Dims) -> Value<D> {
                let result = self.eval().constant_as(v.data(), dims);
                let value = self.make_generic_node::<T, D, _, _, _, _>(result, vec![v.input()], {
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let x = graph.sum_as(&gradient, Dims::default())?;
                            let y = graph.as_scalar(&x)?;
                            store.add_gradient::<T, _>(graph, id, &y)?;
                        }
                        Ok(())
                    }
                });
                value
            }

            fn as_scalar(&mut self, v: &Value<D>) -> Result<Value<T>> {
                let result = self.eval().as_scalar(v.data())?;
                let value = self.make_generic_node::<D, T, _, _, _, _>(result, vec![v.input()], {
                    let vdims = v.dims();
                    let id = v.id();
                    move |graph, store, gradient| {
                        if let Some(id) = id {
                            let x = graph.constant_as(&gradient, vdims);
                            store.add_gradient::<D, _>(graph, id, &x)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }

            fn scale(&mut self, v1: &Value<T>, v2: &Value<D>) -> Value<D> {
                let result = self.eval().scale(v1.data(), v2.data());
                let value = self.make_node(result, vec![v1.input(), v2.input()], {
                    let v1 = v1.clone();
                    let v2 = v2.clone();
                    move |graph, store, gradient| {
                        if let Some(id) = v1.id() {
                            let c2 = graph.link(&v2);
                            let grad = graph.dot(&gradient, c2)?;
                            store.add_gradient::<T, _>(graph, id, &grad)?;
                        }
                        if let Some(id) = v2.id() {
                            let c1 = graph.link(&v1);
                            let grad = graph.scale(c1, &gradient);
                            store.add_gradient::<D, _>(graph, id, &grad)?;
                        }
                        Ok(())
                    }
                });
                value
            }

            fn dot(&mut self, v1: &Value<D>, v2: &Value<D>) -> Result<Value<T>> {
                let result = self.eval().dot(v1.data(), v2.data())?;
                let value = self.make_node(result, vec![v1.input(), v2.input()], {
                    let v1 = v1.clone();
                    let v2 = v2.clone();
                    move |graph, store, gradient| {
                        if let Some(id) = v1.id() {
                            let c2 = graph.link(&v2);
                            let grad = graph.scale(&gradient, c2);
                            store.add_gradient::<D, _>(graph, id, &grad)?;
                        }
                        if let Some(id) = v2.id() {
                            let c1 = graph.link(&v1);
                            let grad = graph.scale(&gradient, c1);
                            store.add_gradient::<D, _>(graph, id, &grad)?;
                        }
                        Ok(())
                    }
                });
                Ok(value)
            }
        }
    };
}

impl_graph!(Config1);
impl_graph!(ConfigN);