1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

//! # fuzzy_rocks Overview
//! 
//! A persistent datastore backed by [RocksDB](https://rocksdb.org) with fuzzy key lookup using an arbitrary
//! distance function accelerated by the [SymSpell](https://github.com/wolfgarbe/SymSpell) algorithm.
//! 
//! The reasons to use this crate over another SymSpell implementation are:
//! - You have non-standard key characters (e.g. DNA snippets, etc.)
//! - You want to use a custom distance function
//! - Startup time matters (You can't recompute key variants at load time)
//! - You have millions of keys and care about memory footprint
//! 
//! ## Records & Keys
//! 
//! A [Table] contains records, each of which has a unique [RecordID], and each record is associated
//! with one or more [Key]s.  Keys are used to perform fuzzy lookups of records.  A [Key] is typically
//! a [String] or an [&str], but may be any number of collections of [KeyCharT](TableConfig#keychart), such
//! as a [Vec], [Array](array), or [Slice](slice).
//! 
//! Keys are not required to be unique in the Table and multiple records may have keys in common.  All
//! of the lookup methods may return multiple records if the lookup key and other criteria matches
//! more than one record in the Table.
//! 
//! ## Usage Examples
//! 
//! A simple use case with a default [Table] configuration using `&str`s as keys.
//! ```rust
//! use fuzzy_rocks::{*};
//! 
//! //Create and reset the FuzzyRocks Table
//! let mut table = Table::<DefaultTableConfig, true>::new("test.rocks", DefaultTableConfig()).unwrap();
//! table.reset().unwrap();
//!
//! //Insert some records
//! let thu = table.insert("Thursday", &"Mokuyoubi".to_string()).unwrap();
//! let wed = table.insert("Wednesday", &"Suiyoubi".to_string()).unwrap();
//! let tue = table.insert("Tuesday", &"Kayoubi".to_string()).unwrap();
//! let mon = table.insert("Monday", &"Getsuyoubi".to_string()).unwrap();
//! 
//! //Use lookup_best, to get the closest fuzzy match
//! let result = table.lookup_best("Bonday")
//!     .unwrap().next().unwrap();
//! assert_eq!(result, mon);
//! 
//! //Use lookup_fuzzy, to get all matches and their distances
//! let results : Vec<(RecordID, u8)> = table
//!     .lookup_fuzzy("Tuesday", Some(2))
//!     .unwrap().collect();
//! assert_eq!(results.len(), 2);
//! assert!(results.contains(&(tue, 0))); //Tuesday -> Tuesday with 0 edits
//! assert!(results.contains(&(thu, 2))); //Thursday -> Tuesday with 2 edits
//! 
//! //Retrieve a key and the value from a record
//! assert_eq!(table.get_one_key(wed).unwrap(), "Wednesday");
//! assert_eq!(table.get_value(wed).unwrap(), "Suiyoubi");
//! ```
//! 
//! Another use case with a [Table] that stores (simplified) DNA sequences.
//! For a more comprehensive representation of the format for biological molecules, look at the [FASTA format](https://en.wikipedia.org/wiki/FASTA_format).
//! ```rust
//! use fuzzy_rocks::{*};
//! 
//! //A simplified data type that might represent a Nucleobase.
//! // https://en.wikipedia.org/wiki/Nucleobase
//! #[derive(Copy, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
//! enum Nucleobase {
//!     A, // adenine
//!     C, // cytosine
//!     G, // guanine
//!     T, // thymine
//!     U, // uracil
//! }
//! 
//! struct Config();
//! impl TableConfig for Config {
//!     type KeyCharT = Nucleobase;
//!     type DistanceT = u8;
//!     type ValueT = usize;
//!     const UTF8_KEYS : bool = false;
//!     const MAX_DELETES : usize = 2;
//!     const MEANINGFUL_KEY_LEN : usize = 24;
//!     const GROUP_VARIANT_OVERLAP_THRESHOLD : usize = 5;
//!     const DISTANCE_FUNCTION : DistanceFunction<Self::KeyCharT, Self::DistanceT> = Self::levenstein_distance;
//! }
//! 
//! //Create and reset the FuzzyRocks Table
//! let mut table = Table::<Config, false>::new("test.rocks", Config()).unwrap();
//! ``` 
//! 
//! Additional usage examples can be found in the tests, located at the bottom of the [src/lib.rs](https://github.com/luketpeterson/fuzzy_rocks/blob/main/src/lib.rs) file.
//! 
//! ## Table Configuration
//! 
//! A [TableConfig] object is passed as an argument to [Table::new].  The TableConfig specifies a number
//! of things about the table, including:
//! 
//! - Data Types that define the structure and representation of certain aspects of the [Table]
//! - Tuning Parameters to affect the performance of various operations
//! - A Distance Function to calculate the distance between two keys in a [Metric Space](https://en.wikipedia.org/wiki/Metric_space)
//! 
//! [DefaultTableConfig] is a zero-sized type that implements a default [TableConfig] for UTF-8 keys.  This will be sufficient for many situations.
//! If you need to customize the TableConfig, more details about the type parameters and fields can be found in the documentation
//! for [TableConfig].
//! 
//! ### Unicode and UTF-8 Support
//! 
//! A [Table] may be configured to encode keys as [UTF-8](https://en.wikipedia.org/wiki/UTF-8) or not, depending on your requirements.
//! This is configured through the [TableConfig] object's [UTF8_KEYS](TableConfig::UTF8_KEYS) constant.
//! 
//! ## Algorithm Details
//! 
//! The authoritative description of SymSpell is the ReadMe for the [SymSpell project](https://github.com/wolfgarbe/SymSpell).
//! 
//! The fuzzy_rocks implementation has a few additional details to be aware of:
//! 
//! - fuzzy_rocks won't find keys that don't have at least one character in common, regardless of the value
//! of [MAX_DELETES](TableConfig::MAX_DELETES).  For example the key `me` won't be found by the query string `hi`, even with a distance
//! of 2 (or any other value).  This decision was made because the variant space becomes very crowded
//! for short keys, and the extreme example of the empty-string variant was severely damaging performance with
//! short keys.
//! 
//! ## Performance Characteristics
//! 
//! This crate is designed for large databases where startup time and resident memory footprint are significant
//! considerations.  This create has been tested with 200,000 records cumulatively having over 1 million keys,
//! and about 140 million key variants.  In this situation, a fuzzy lookup was between 500us (microseconds)
//! and 1ms, running on my laptop - which I consider to be very expensive in absolute terms, but acceptable
//! for many use cases.
//! 
//! The performance will also vary greatly depending on the key distribution and the table parameters.  Keys
//! that are distinct from eachother will lead to faster searches vs. keys that share many variants in common.
//! 
//! ### Tuning for Performance
//! 
//! Performance is highly dependent on the values for the [TableConfig] used when creating the [Table], but
//! the values must match the characteristics of the keys in the data set.
//! 
//! Briefly, the tuning parameters are:
//! 
//! [MAX_DELETES](TableConfig::MAX_DELETES): A smaller `MAX_DELETES` value will perform exponentially better but be able to find
//! fewer results for a search.  `MAX_DELETES` should be tuned to be as small as you can make it, but no smaller. ;-)
//! 
//! [MEANINGFUL_KEY_LEN](TableConfig::MEANINGFUL_KEY_LEN): A higher value for `MEANINGFUL_KEY_LEN` will result in fewer wasted evaluations of the distance function
//! but will lead to more entries in the variants database and thus reduced database performance.
//! 
//! [GROUP_VARIANT_OVERLAP_THRESHOLD](TableConfig::GROUP_VARIANT_OVERLAP_THRESHOLD) controls the logic about when
//! a key is merged with an existing `key_group` vs. when a new `key_group` is created.
//! 
//! More detailed information on these tuning parameters can be found in the docs for [TableConfig].
//! 
//! If your use-case can cope with a higher startup latency and you are ok with all of your keys and
//! variants being loaded into memory, then query performance will certainly be better using a solution
//! built on Rust's native collections, such as this [symspell](https://crates.io/crates/symspell)
//! crate on [crates.io](http://crates.io).
//! 
//! ### Performance Counters
//! 
//! You can use the [PerfCounterFields] to measure the number of internal operations being performed, and use
//! that information to adjust the [TableConfig] parameters.
//! 
//! First, you must enable the `perf_counters`
//! feature in the `Cargo.toml` file, with an entry similar to this:
//! 
//! ```toml
//! [dependencies]
//! fuzzy_rocks = { version = "0.2.0", features = ["perf_counters"] }
//! ```
//! 
//! Then, the performance counters may be reset by calling [Table::reset_perf_counters] and read by calling [Table::get_perf_counters].
//! 
//! ### Benchmarks
//! 
//! Fuzzy_rocks contains a (small but growing) suite of benchmarks, implemented with [criterion](https://docs.rs/criterion).
//! These can be invoked with:
//! 
//! ```sh
//! cargo bench -- --nocapture
//! ```
//! 
//! ## Database Format
//! 
//! DB contents are encoded using the [bincode] crate.  Currently the database contains 4 Column Families.
//! 
//! 1. The "rec_data" CF uses a little-endian-encoded [RecordID] as its key, and stores a varint-encoded `Vec` of
//!     integers, which represent key_group indices, each of which can be combined with a `RecordID` to create a
//!     `KeyGroupID`.  Each referenced key_group contains at least one key associated with the record.
//!     The `rec_data` CF is the place to start when constructing the complete set of keys associated with a record.
//! 
//! 2. The "keys" CF uses a little-endian-encoded `KeyGroupID` as its key, and stores a varint-encoded `Vec` of
//!     OwnedKeys (think Strings), each representing a key in a key_group.  In the present implementation,
//!     a given key_group only stores keys for a single record, and the `KeyGroupID` embeds the associated
//!     [RecordID] in its lower 44 bits.  This scheme is likely to change in the future.
//! 
//! 3. The "variants" CF uses a serialized key variant as its key, and stores a fixint-encoded `Vec` of
//!     `KeyGroupID`s representing every key_group that holds a key that can be reduced to this variant.
//!     Complete key strings themselves are represented as variants in this CF.
//! 
//! 4. The "values" CF uses a little-endian-encoded [RecordID] as its key, and stores the [bincode] serialized
//!     [ValueT](TableConfig::ValueT) associated with the record.
//! 
//! ## Future Work
//! 
//! 1. Optimization for crowded neighborhoods in the key metric-space.  The current design optimizes for the case
//!     where a single record has multiple keys with overlapping variants.  This is an efficient design in the
//!     case where many proximate keys belong to the same record, as is the case when multiple spelling variations
//!     for the same word are submitted to the Table.
//! 
//!     First, here is some background on how we got to this design.  In v0.2.0, multi-key
//!     support was added because many use cases involved creating multiple records that were conceptually the same
//!     record in order to represent key variations such as multiple valid spellings of the same thing. Becauase
//!     these keys are often similar to each other and shared many variants in the database, the key_groups feature
//!     was added to improve performance by reducing the number of keys in each variant entry.  Ideally
//!     a given variant entry would only contain one reference to a record even if that record had many similar keys.
//! 
//!     Unfortunately this meant all the record's keys would be loaded together and that lead to unnecessary
//!     invocations of the distance function to evaluate all of the keys for each record.  The solution in v0.2.0
//!     was to segment a record's keys into key_groups, so similar keys would be together in the same key group
//!     but other keys needn't be tested.  This solution works well for individual records with many keys that
//!     cluster together.
//! 
//!     However, a large performance problem still exists when many keys from *Different* records cluster together.
//!     To address this, I think that a different database layout is needed, and here is my thinking:
//! 
//!     - Create a separate CF to store full keys is needed, and each key entry would contain the [RecordID]s
//!         assiciated with that key. There are two possible implementations:
//! 
//!         - A more compact implementation for longer keys would be to have a "KeyID" to reference each key entry.
//!             Then the entry would contain the key itself, and the [RecordID]s associated with the key in the same
//!             entry or in another CF that is also indexed by `KeyID`.  In this implementation, the variant CF is
//!             still used to find the KeyID, and perhaps we could establish a convention where a variant keeps the
//!             KeyID for an exact match at the beginning of the list.
//!         - An implementation that requires less lookup indirection would be to use the exact keys themselves,
//!             (or perhaps meaningful keys. See [TableConfig::MEANINGFUL_KEY_LEN]) as the Rocks keys to the CF.
//!             Then we would separate the exact keys from the "variants" CF, and keys themselves wouldn't be placed
//!             into the "variants" CF.  Each variant entry would include all of the full keys that it is a variant of.
//! 
//!         The decision about which of these implementations is better depends on the average key length.  A 64-bit
//!         KeyID is the equivalent of an 8-byte key, but an average key is around 16 bytes.  On the other hand,
//!         eliminating the indirection associated with a second DB query might tip the scales in favor of embedding
//!         the keys directly.
//!     
//!     - The changes above address many records with the same keys, but we may still want to retain the optimization
//!         where many similar keys are implemented under only one `KeyGroupID` in a variant entry, instead of one
//!         reference for each individual key.  Especially if those keys are fetched together often.
//!     
//!         So, I believe the best path forward looks more like the first option above.  So we would:
//!         
//!         - Rework the `KeyGroupID` so it no longer implies a [RecordID] within its lower 44 bits, and is instead
//!             a completely different number, assigned as needed.
//! 
//!         - Rework the key_group entries so that each key is associated with a list of [RecordID]s.
//! 
//!         - Rework the "rec_data" CF, so that, instead of a list of key_group indices (which are then converted
//!             into `KeyGroupID`s), the "rec_data" entry would store the complete list of keys for the record.
//!
//!         I believe this approach will improve lookup performance when there are many similar keys belonging to
//!         different records.  I can identify several downsides however:
//! 
//!         - The lookup_exact function no longer has the existing fast path because it must pull the key_group
//!             entry no matter what, in order to get the [RecordID]s.  This can be partially ameliorated by moving
//!             the exact match key_group to the beginning of a variant's list.  In addition, the current fast-path
//!             has a BUG! (see item 8. in this list.)
//! 
//!         - The key_group entry will be more expensive to parse on account of it containing a vector of [RecordID]s
//!             associated with each key.  However, this will be offset by needing to load many fewer key_group
//!             entries, so I think this may be a net win - or at least a wash.
//! 
//!         - The "rec_data" CF will bloat as each key group index (about 1 byte) is replaced by a whole key (avg 16
//!             bytes).  However, the rec_data is only loaded for bookkeeping operations, and doesn't figure into the
//!             fuzzy lookup speed.  Therefore the main impact will be DB size, and we can expect a 5-10% increase
//!             from this factor.
//! 
//! 2. BK-Tree search within a key-group.  If we end up with many proximate keys, there may be an advantage to having
//!     a secondary search structure within the table.  In fact, I think a BL-Tree always outperforms a list, so
//!     the real question is whether the performance boost justifies the work and code complexity.
//! 
//!     SymSpell is very well optimized for sparse key spaces, but in dense key spaces (where many keys share many
//!     variants), the SymSpell optimization still results in the need to test hundreds of keys with the distance
//!     function.  In this case, a BK-Tree may speed up the fuzzy lookups substantially.
//! 
//! 3. Multi-threading within a lookup. Rework internal plumbing so that variant entries can be fetched and processed
//!     in parallel, leading to parallel evaluation of key groups and parallel execution of distance functions.
//! 
//! 4. Investigate adding a "k-nn lookup" method that would return up to k results, ordered by their distance from the
//!     lookup key.  Perhaps in addition to, or instead of, the [Table::lookup_best] method, because this new method is
//!     essentially a generalization of [Table::lookup_best]
//! 
//!     This idea is a little bit problematic because a function that returns exactly k results cannot be deterministic
//!     in cases where there are equal-distance results.  We will often find that k straddles a border and the only
//!     way to return a deterministic result set is to return more than k results. (or fewer than k, but that may
//!     mean a set with no results, which is probably not what the caller wants.)
//! 
//! 5. Save the TableConfig to the database, in order to detect an error when the config changes in a way that makes
//!     the database invalid.  Also include a software version check, and create a function to represent which
//!     software versions contain database format compatibility breaks.  Open Question: Should we store a checksum
//!     of the distance function?  The function may be re-compiled or changed internally without changing behavior,
//!     but we can't know that.
//! 
//! 6. Remove the `KeyUnsafe` trait as soon as "GenericAssociatedTypes" is stabilized in Rust.  
//!     <https://github.com/rust-lang/rust/issues/44265>.  As soon as I can implement an associated type with an
//!     internal lifetime that isn't a parameter to the Key trait itself, then I'll be able to return objects that
//!     have the same base type but a shorter associated lifetime, and thus eliminate the need to transmute lifetimes.
//! 
//! 7. Investigate tools to detect when a [Table] parameter is tuned badly for a data set, based on known optimal
//!     ratios for certain performance counters.  Alternatively, build tools to assist in performing a parameter
//!     search optimization process, that could automatically sweep the parameters, searching for the optimal
//!     [TableConfig] for a given data set.
//! 
//! 8. Fix BUG! in [Table::lookup_exact] caused by the optimization where we don't load the key_group associated with
//!     the exact variant, so we may return records whose keys are supersets of the lookup key.  NOTE: This will
//!     likely be fixed as a side-effect of the changes proposed in 1.
//! 
//! ## Release History
//! 
//! ### 0.2.0
//! - Multi-key support. Records may now be associated with more than one key
//! - Lookup_best now returns an iterator instead of one arbitrarily-chosen record
//! - Support for Keys composed of a generic KeyCharT type, vs. only ASCII or UTF-8
//! - Central TableConfig trait to centralize all tuning parameters
//! - Added micro-benchmarks using Criterion
//! - Added `perf_counters` feature
//! - Massive performance optimizations for lookups (10x-100x) in some cases
//!     - lookup_best checks lookup_exact first before more expensive lookup_fuzzy
//!     - key_groups mingle similar keys for a record
//!     - micro-optimizations to levenstein_distance function for 3x speedup
//!     - record value stored separately from keys in DB, so Value isn't parsed unnecessarily
//! 
//! ### 0.1.1
//! - Initial Release
//! 
//! ## Misc
//! 
//! **NOTE**: The included `geonames_megacities.txt` file is a stub for the `geonames_test`, designed to stress-test
//! this crate.  The abriged file is included so the test will pass regardless, and to avoid bloating the
//! download.  The content of `geonames_megacities.txt` was derived from data on [geonames.org](http://geonames.org),
//! and licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode)
//! 

mod unicode_string_helpers;
mod bincode_helpers;
mod database;
mod key;
pub use key::Key;
mod records;
pub use records::RecordID;
mod table_config;
pub use table_config::{TableConfig, DistanceFunction, DefaultTableConfig, MAX_KEY_LENGTH};
mod key_groups;
mod sym_spell;
mod perf_counters;
mod table;
pub use table::{Table};
pub use perf_counters::{PerfCounterFields};


#[cfg(test)]
mod tests {
    use std::collections::{HashSet};
    use std::fs;
    use std::path::PathBuf;
    use csv::ReaderBuilder;
    use serde::{Serialize, Deserialize};

    use crate::{*};
    use crate::unicode_string_helpers::{*};

    #[test]
    /// This test is designed to stress the database with many thousand entries.
    ///  
    /// You may download an alternate GeoNames file in order to get a more rigorous test.  The included
    /// `geonames_megacities.txt` file is just a stub to avoid bloating the crate download.  The content
    /// of `geonames_megacities.txt` was derived from data on [http://geonames.org], and licensed under
    /// a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode)
    /// 
    /// A geonames file may be downloaded from: [http://download.geonames.org/export/dump/cities15000.zip]
    /// for the smallest file, and "cities500.zip" for the largest, depending on whether you want this
    /// to pass in the a lightweight way or the most thorough.
    fn geonames_test() {

        let mut geonames_file_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
        geonames_file_path.push("geonames_megacities.txt");

        // Alternate geonames file
        // NOTE: Uncomment this to use a different file
        // let geonames_file_path = PathBuf::from("/path/to/file/cities500.txt");
    
        //Create the FuzzyRocks Table with an appropriate config
        struct Config();
        impl TableConfig for Config {
            type KeyCharT = char;
            type DistanceT = u8;
            type ValueT = i32;
        }
        let mut table = Table::<Config, true>::new("geonames.rocks", Config()).unwrap();

        //Clear out any records that happen to be hanging out
        table.reset().unwrap();

        //Data structure to parse the GeoNames TSV file into
        #[derive(Clone, Debug, Serialize, Deserialize)]
        struct GeoName {
            geonameid         : i32, //integer id of record in geonames database
            name              : String, //name of geographical point (utf8) varchar(200)
            asciiname         : String, //name of geographical point in plain ascii characters, varchar(200)
            alternatenames    : String, //alternatenames, comma separated, ascii names automatically transliterated, convenience attribute from alternatename table, varchar(10000)
            latitude          : f32, //latitude in decimal degrees (wgs84)
            longitude         : f32, //longitude in decimal degrees (wgs84)
            feature_class     : char, //see http://www.geonames.org/export/codes.html, char(1)
            feature_code      : String,//[char; 10], //see http://www.geonames.org/export/codes.html, varchar(10)
            country_code      : String,//[char; 2], //ISO-3166 2-letter country code, 2 characters
            cc2               : String, //alternate country codes, comma separated, ISO-3166 2-letter country code, 200 characters
            admin1_code       : String,//[char; 20], //fipscode (subject to change to iso code), see exceptions below, see file admin1Codes.txt for display names of this code; varchar(20)
            admin2_code       : String, //code for the second administrative division, a county in the US, see file admin2Codes.txt; varchar(80) 
            admin3_code       : String,//[char; 20], //code for third level administrative division, varchar(20)
            admin4_code       : String,//[char; 20], //code for fourth level administrative division, varchar(20)
            population        : i64, //bigint (8 byte int)
            #[serde(deserialize_with = "default_if_empty")]
            elevation         : i32, //in meters, integer
            #[serde(deserialize_with = "default_if_empty")]
            dem               : i32, //digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. srtm processed by cgiar/ciat.
            timezone          : String, //the iana timezone id (see file timeZone.txt) varchar(40)
            modification_date : String, //date of last modification in yyyy-MM-dd format
        }

        fn default_if_empty<'de, D, T>(de: D) -> Result<T, D::Error>
            where D: serde::Deserializer<'de>, T: serde::Deserialize<'de> + Default,
        {
            Option::<T>::deserialize(de).map(|x| x.unwrap_or_else(|| T::default()))
        }

        //Open the tab-saparated value file
        let tsv_file_contents = fs::read_to_string(geonames_file_path).expect("Error reading geonames file");
        let mut tsv_parser = ReaderBuilder::new()
            .delimiter(b'\t')
            .has_headers(false)
            .flexible(true) //We want to permit situations where some rows have fewer columns for now
            .quote(0)
            .double_quote(false)
            .from_reader(tsv_file_contents.as_bytes());

        //Iterate over every geoname entry in the geonames file and insert it (lowercase) into our table
        let mut record_id = RecordID::NULL;
        let mut tsv_record_count = 0;
        for geoname in tsv_parser.deserialize::<GeoName>().map(|result| result.unwrap()) {

            //Separate the comma-separated alternatenames field
            let mut names : HashSet<String> = HashSet::from_iter(geoname.alternatenames.split(',').map(|string| string.to_lowercase()));
            
            //Add the primary name for the place
            names.insert(geoname.name.to_lowercase());

            //Create a record in the table
            let names_vec : Vec<String> = names.into_iter()
                .map(|string| unicode_truncate(string.as_str(), MAX_KEY_LENGTH))
                .collect();
            record_id = table.create(&names_vec[..], &geoname.geonameid).unwrap();
            tsv_record_count += 1;

            //Status Print
            if record_id.0 % 500 == 499 {
                println!("inserting... {}, {}", geoname.name.to_lowercase(), record_id.0);
            }
        }

        //Indirectly that the number of records roughly matches the number of entries from the CSV
        //NOTE: RocksDB doesn't have a "record_count" feature, and therefore neither does our Table,
        //but since we started from a reset table, we can ensure that the last assigned record_id
        //should roughly correspond to the number of entries we inserted
        assert_eq!(record_id.0 + 1, tsv_record_count);

        //Confirm we can find a known city (London)
        let london_results : Vec<i32> = table.lookup_exact("london").unwrap().map(|record_id| table.get_value(record_id).unwrap()).collect();
        assert!(london_results.contains(&2643743)); //2643743 is the geonames_id of "London"

        //Confirm we can find a known city with a longer key name (not on the fast-path)
        let rio_results : Vec<i32> = table.lookup_exact("rio de janeiro").unwrap().map(|record_id| table.get_value(record_id).unwrap()).collect();
        assert!(rio_results.contains(&3451190)); //3451190 is the geonames_id of "Rio de Janeiro"

        //Close RocksDB connection by dropping the table object
        drop(table);
        drop(london_results);

        //Reopen the table and confirm that "London" is still there
        let table = Table::<Config, true>::new("geonames.rocks", Config()).unwrap();
        let london_results : Vec<i32> = table.lookup_exact("london").unwrap().map(|record_id| table.get_value(record_id).unwrap()).collect();
        assert!(london_results.contains(&2643743)); //2643743 is the geonames_id of "London"
    }

    #[test]
    fn fuzzy_rocks_test() {

        //Configure and Create the FuzzyRocks Table
        struct Config();
        impl TableConfig for Config {
            type KeyCharT = char;
            type DistanceT = u8;
            type ValueT = String;
            const MEANINGFUL_KEY_LEN : usize = 8;
        }
        let mut table = Table::<Config, true>::new("test.rocks", Config()).unwrap();

        //Clear out any records that happen to be hanging out from a previous run
        table.reset().unwrap();

        //Insert some records
        let sun = table.insert("Sunday", &"Nichiyoubi".to_string()).unwrap();
        let sat = table.insert("Saturday", &"Douyoubi".to_string()).unwrap();
        let fri = table.insert("Friday", &"Kinyoubi".to_string()).unwrap();
        let thu = table.insert("Thursday", &"Mokuyoubi".to_string()).unwrap();
        let wed = table.insert("Wednesday", &"Suiyoubi".to_string()).unwrap();
        let tue = table.insert("Tuesday", &"Kayoubi".to_string()).unwrap();
        let mon = table.insert("Monday", &"Getsuyoubi".to_string()).unwrap();

        //Test lookup_exact
        let results : Vec<(String, String)> = table.lookup_exact("Friday").unwrap().map(|record_id| table.get(record_id).unwrap()).collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0].0, "Friday");
        assert_eq!(results[0].1, "Kinyoubi");

        //Test lookup_exact, with a query that should provide no results
        let results : Vec<RecordID> = table.lookup_exact("friday").unwrap().collect();
        assert_eq!(results.len(), 0);

        //Test lookup_best, using the supplied edit_distance function
        let results : Vec<RecordID> = table.lookup_best("Bonday").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert!(results.contains(&mon));

        //Test lookup_best, when there is no acceptable match
        let results : Vec<RecordID> = table.lookup_best("Rahu").unwrap().collect();
        assert_eq!(results.len(), 0);

        //Test lookup_fuzzy with a perfect match, using the supplied edit_distance function
        //In this case, we should only get one match within edit-distance 2
        let results : Vec<(String, String, u8)> = table.lookup_fuzzy("Saturday", Some(2))
            .unwrap().map(|(record_id, distance)| {
                let (key, val) = table.get(record_id).unwrap();
                (key, val, distance)
            }).collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0].0, "Saturday");
        assert_eq!(results[0].1, "Douyoubi");
        assert_eq!(results[0].2, 0);

        //Test lookup_fuzzy with a perfect match, but where we'll hit another imperfect match as well
        let results : Vec<(String, String, u8)> = table.lookup_fuzzy("Tuesday", Some(2))
            .unwrap().map(|(record_id, distance)| {
                let (key, val) = table.get(record_id).unwrap();
                (key, val, distance)
            }).collect();
        assert_eq!(results.len(), 2);
        assert!(results.contains(&("Tuesday".to_string(), "Kayoubi".to_string(), 0)));
        assert!(results.contains(&("Thursday".to_string(), "Mokuyoubi".to_string(), 2)));

        //Test lookup_fuzzy where we should get no match
        let results : Vec<(RecordID, u8)> = table.lookup_fuzzy("Rahu", Some(2)).unwrap().collect();
        assert_eq!(results.len(), 0);

        //Test lookup_fuzzy_raw, to get all of the SymSpell Delete variants
        //We're testing the fact that characters beyond `config.meaningful_key_len` aren't used for the comparison
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Sunday. That's my fun day.").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], sun);

        //Test deleting a record, and ensure we can't access it or any trace of its variants
        table.delete(tue).unwrap();
        assert!(table.get_one_key(tue).is_err());

        //Since "Tuesday" had one variant overlap with "Thursday", i.e. "Tusday", make sure we now find
        // "Thursday" when we attempt to lookup "Tuesday"
        let results : Vec<RecordID> = table.lookup_best("Tuesday").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert!(results.contains(&thu));

        //Delete "Saturday" and make sure we see no matches when we try to search for it
        table.delete(sat).unwrap();
        assert!(table.get_one_key(sat).is_err());
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Saturday").unwrap().collect();
        assert_eq!(results.len(), 0);

        //Test replacing a record with another one and ensure the right data is retained
        table.replace_keys(wed, &["Miercoles"]).unwrap();
        table.replace_value(wed, &"Zhousan".to_string()).unwrap();
        let results : Vec<(String, String)> = table.lookup_exact("Miercoles").unwrap().map(|record_id| (table.get_one_key(record_id).unwrap(), table.get_value(record_id).unwrap())).collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0].0, "Miercoles");
        assert_eq!(results[0].1, "Zhousan");
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Mercoledi").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], wed);

        //Try replacing the keys and value on a record that we deleted earlier, and make sure
        // we get the right errors
        assert!(table.replace_keys(sat, &["Sabado"]).is_err());
        assert!(table.replace_value(sat, &"Zhouliu".to_string()).is_err());

        //Attempt to replace a record's keys with an empty list, check the error
        let empty_slice : &[&str] = &[];
        assert!(table.replace_keys(sat, empty_slice).is_err());
        
        //Attempt to replace an invalid record and confirm we get a reasonable error
        assert!(table.replace_keys(RecordID::NULL, &["Nullday"]).is_err());
        assert!(table.replace_value(RecordID::NULL, &"Null".to_string()).is_err());

        //Test that create() returns the right error if no keys are supplied
        let empty_slice : &[&str] = &[];
        assert!(table.create(empty_slice, &"Douyoubi".to_string()).is_err());

        //Recreate Saturday using the create() api
        //While we're here, Also test that the same key string occurring more than once
        // doesn't result in additional keys being added
        let sat = table.create(&["Saturday", "Saturday"], &"Douyoubi".to_string()).unwrap();
        table.add_keys(sat, &["Saturday", "Saturday"]).unwrap();
        assert_eq!(table.keys_count(sat).unwrap(), 1);

        //Add some new keys to it, and verify that it can be found using any of its three keys
        table.add_keys(sat, &["Sabado", "Zhouliu"]).unwrap();
        assert_eq!(table.keys_count(sat).unwrap(), 3);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Saturday").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], sat);
        let results : Vec<RecordID> = table.lookup_exact("Zhouliu").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], sat);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Sabato").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], sat);

        //Test deleting one of the keys from a record, and make sure we can't find it using that
        //key but the other keys are unaffected
        table.remove_keys(sat, &["Sabado"]).unwrap();
        assert_eq!(table.keys_count(sat).unwrap(), 2);
        let results : Vec<RecordID> = table.lookup_exact("Sabado").unwrap().collect();
        assert_eq!(results.len(), 0);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Sabato").unwrap().collect();
        assert_eq!(results.len(), 0);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Saturnsday").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], sat);
        let results : Vec<RecordID> = table.lookup_exact("Zhouliu").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], sat);

        //Attempt to remove the remaining keys and ensure we get an error and both keys remain
        assert!(table.remove_keys(sat, &["Saturday", "Zhouliu"]).is_err());
        assert_eq!(table.keys_count(sat).unwrap(), 2);
        let results : Vec<RecordID> = table.lookup_exact("Saturday").unwrap().collect();
        assert_eq!(results.len(), 1);
        let results : Vec<RecordID> = table.lookup_exact("Zhouliu").unwrap().collect();
        assert_eq!(results.len(), 1);

        //Test that replacing the keys of a record doesn't leave any orphaned variants
        table.replace_keys(sat, &["Sabado"]).unwrap();
        assert_eq!(table.keys_count(sat).unwrap(), 1);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Saturday").unwrap().collect();
        assert_eq!(results.len(), 0);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Zhouliu").unwrap().collect();
        assert_eq!(results.len(), 0);

        //Test that adding the same key again doesn't result in multiple copies of the key
        table.add_keys(sat, &["Sabado"]).unwrap();
        assert_eq!(table.keys_count(sat).unwrap(), 1);
        table.add_keys(sat, &["Saturday", "Saturday"]).unwrap();
        assert_eq!(table.keys_count(sat).unwrap(), 2);

        //Test that nothing breaks when we have two keys with overlapping variants, and then
        // delete one
        // "Venerdi" & "Vendredi" have overlapping variant: "Venedi"
        table.add_keys(fri, &["Geumyoil", "Viernes", "Venerdi", "Vendredi"]).unwrap();
        assert_eq!(table.keys_count(fri).unwrap(), 5);
        table.remove_keys(fri, &["Vendredi"]).unwrap();
        assert_eq!(table.keys_count(fri).unwrap(), 4);
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Vendredi").unwrap().collect();
        assert_eq!(results.len(), 1); //We'll still get Venerdi as a fuzzy match

        //Try deleting the non-existent key with valid variants, to make sure nothing breaks
        table.remove_keys(fri, &["Vendredi"]).unwrap();
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Vendredi").unwrap().collect();
        assert_eq!(results.len(), 1); //We'll still get Venerdi as a fuzzy match
        assert_eq!(table.keys_count(fri).unwrap(), 4);

        //Finally delete "Venerdi", and make sure the variants are all gone
        table.remove_keys(fri, &["Venerdi"]).unwrap();
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("Vendredi").unwrap().collect();
        assert_eq!(results.len(), 0);
        assert_eq!(table.keys_count(fri).unwrap(), 3);

        //Test whether [char] keys get properly converted to UTF-8-encoded Strings internally
        // when used as the key to a Table with UTF-8 key encoding.
        let sun_japanese = table.insert("日曜日", &"Sunday".to_string()).unwrap();
        let key_array = ['日', '曜', '日'];
        let results : Vec<RecordID> = table.lookup_exact(&key_array).unwrap().collect();
        assert_eq!(results.len(), 1);
        assert!(results.contains(&sun_japanese));
        let results : Vec<RecordID> = table.lookup_fuzzy_raw(&key_array).unwrap().collect();
        assert_eq!(results.len(), 1);
        assert!(results.contains(&sun_japanese));

        let key_array = ['土', '曜', '日'];
        let sat_japanese = table.insert(&key_array, &"Saturday".to_string()).unwrap();
        let results : Vec<RecordID> = table.lookup_exact("土曜日").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert!(results.contains(&sat_japanese));
        let results : Vec<RecordID> = table.lookup_fuzzy_raw("土曜日").unwrap().collect();
        assert_eq!(results.len(), 2);
        assert!(results.contains(&sat_japanese));
        assert!(results.contains(&sun_japanese));
    }

    #[test]
    /// This test is tests some basic non-unicode key functionality.
    fn non_unicode_key_test() {

        //Configure and Create the FuzzyRocks Table
        struct Config();
        impl TableConfig for Config {
            type KeyCharT = u8;
            type DistanceT = u8;
            type ValueT = f32;
            const MAX_DELETES : usize = 1;
            const MEANINGFUL_KEY_LEN : usize = 8;
            const UTF8_KEYS : bool = false;
        }
        let mut table = Table::<Config, false>::new("test2.rocks", Config()).unwrap();

        //Clear out any records that happen to be hanging out from a previous run
        table.reset().unwrap();

        let one = table.insert(b"One", &1.0).unwrap();
        let _two = table.insert(b"Dos", &2.0).unwrap();
        let _three = table.insert(b"San", &3.0).unwrap();
        let pi = table.insert(b"Pi", &3.1415926535).unwrap();

        let results : Vec<RecordID> = table.lookup_best(b"P").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert!(results.contains(&pi));
        
        let results : Vec<RecordID> = table.lookup_fuzzy_raw(b"ne").unwrap().collect();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], one);
    }

    #[test]
    /// This tests the perf-counters
    fn perf_counters_test() {

        //Configure and Create the FuzzyRocks Table using a very big database
        struct Config();
        impl TableConfig for Config {
            type KeyCharT = char;
            type DistanceT = u8;
            type ValueT = i32;
        }
        let table = Table::<Config, true>::new("all_cities.geonames.rocks", Config()).unwrap();

        //Make sure we have no pathological case of a variant for a zero-length string
        let iter = table.lookup_fuzzy_raw("").unwrap();
        assert_eq!(iter.count(), 0);

        #[cfg(feature = "perf_counters")]
        {
            //Make sure we are on the fast path that doesn't fetch the keys for the case when the key
            //length entirely fits within config.meaningful_key_len
            //BUG!!: This optimization is probably bogus and causes additional incorrect results.  See the
            // comment in Table::lookup_exact_internal()
            table.reset_perf_counters();
            let _iter = table.lookup_exact("london").unwrap();
            assert_eq!(table.get_perf_counters().key_group_load_count, 0);

            //Test that the other counters do something...
            table.reset_perf_counters();
            let iter = table.lookup_fuzzy("london", None).unwrap();
            let _ = iter.count();
            assert!(table.get_perf_counters().variant_lookup_count > 0);
            assert!(table.get_perf_counters().variant_load_count > 0);
            assert!(table.get_perf_counters().key_group_ref_count > 0);
            assert!(table.get_perf_counters().max_variant_entry_refs > 0);
            assert!(table.get_perf_counters().key_group_load_count > 0);
            assert!(table.get_perf_counters().keys_found_count > 0);
            assert!(table.get_perf_counters().distance_function_invocation_count > 0);
            assert!(table.get_perf_counters().records_found_count > 0);

            //Debug Prints
            println!("-=-=-=-=-=-=-=-=- lookup_fuzzy london test -=-=-=-=-=-=-=-=-");
            println!("variant_lookup_count {}", table.get_perf_counters().variant_lookup_count);
            println!("variant_load_count {}", table.get_perf_counters().variant_load_count);
            println!("key_group_ref_count {}", table.get_perf_counters().key_group_ref_count);
            println!("max_variant_entry_refs {}", table.get_perf_counters().max_variant_entry_refs);
            println!("key_group_load_count {}", table.get_perf_counters().key_group_load_count);
            println!("keys_found_count {}", table.get_perf_counters().keys_found_count);
            println!("distance_function_invocation_count {}", table.get_perf_counters().distance_function_invocation_count);
            println!("records_found_count {}", table.get_perf_counters().records_found_count);

            //Test the perf counters with lookup_exact
            table.reset_perf_counters();
            let iter = table.lookup_exact("london").unwrap();
            let _ = iter.count();
            println!("-=-=-=-=-=-=-=-=- lookup_exact london test -=-=-=-=-=-=-=-=-");
            println!("variant_lookup_count {}", table.get_perf_counters().variant_lookup_count);
            println!("variant_load_count {}", table.get_perf_counters().variant_load_count);
            println!("key_group_ref_count {}", table.get_perf_counters().key_group_ref_count);
            println!("max_variant_entry_refs {}", table.get_perf_counters().max_variant_entry_refs);
            println!("key_group_load_count {}", table.get_perf_counters().key_group_load_count);
            println!("keys_found_count {}", table.get_perf_counters().keys_found_count);
            println!("distance_function_invocation_count {}", table.get_perf_counters().distance_function_invocation_count);
            println!("records_found_count {}", table.get_perf_counters().records_found_count);
        }
        
        #[cfg(not(feature = "perf_counters"))]
        {
            println!("perf_counters feature not enabled");
        }
    }

}