1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! An implementation of the FuzzyDBSCAN algorithm.
//!
//! # Example
//!
//! ```rust
//! extern crate fuzzy_dbscan;
//!
//! #[derive(Debug)]
//! struct Point {
//!     x: f64,
//!     y: f64,
//! }
//!
//! impl fuzzy_dbscan::MetricSpace for Point {
//!     fn distance(&self, other: &Self) -> f64 {
//!         ((other.x - self.x).powi(2) + (other.y - self.y).powi(2)).sqrt()
//!     }
//! }
//!
//! fn main() {
//!     let points = vec![
//!         Point { x: 0.0, y: 0.0 },
//!         Point { x: 100.0, y: 100.0 },
//!         Point { x: 105.0, y: 105.0 },
//!         Point { x: 115.0, y: 115.0 },
//!     ];
//!
//!     let fuzzy_dbscan = fuzzy_dbscan::FuzzyDBSCAN {
//!         eps_min: 10.0,
//!         eps_max: 20.0,
//!         pts_min: 1.0,
//!         pts_max: 2.0,
//!     };
//!
//!     println!("{:?}", fuzzy_dbscan.cluster(&points));
//! }
//! ```
extern crate wasm_bindgen;
#[macro_use]
extern crate serde_derive;

use wasm_bindgen::prelude::*;

use std::collections::HashSet;
use std::f64;

fn take_arbitrary(set: &mut HashSet<usize>) -> Option<usize> {
    let value_copy = if let Some(value) = set.iter().next() {
        Some(*value)
    } else {
        None
    };
    if let Some(value) = value_copy {
        set.take(&value)
    } else {
        None
    }
}

/// A trait to compute distances between points.
pub trait MetricSpace: Sized {
    /// Returns the distance between `self` and `other`.
    fn distance(&self, other: &Self) -> f64;
}

#[cfg(all(target_arch = "wasm32", target_os = "unknown"))]
#[derive(Deserialize)]
pub struct JsPoint {
    x: f64,
    y: f64,
}

#[cfg(all(target_arch = "wasm32", target_os = "unknown"))]
impl MetricSpace for JsPoint {
    fn distance(&self, other: &Self) -> f64 {
        ((other.x - self.x).powi(2) + (other.y - self.y).powi(2)).sqrt() as f64
    }
}

/// A high-level classification, as defined by the FuzzyDBSCAN algorithm.
#[derive(Debug, PartialEq, Serialize)]
pub enum Category {
    Core,
    Border,
    Noise,
}

/// An element of a [cluster](Cluster).
#[derive(Debug, Serialize)]
pub struct Assignment {
    /// The point index.
    pub index: usize,
    /// A (soft) label between `0.0` and `1.0`.
    pub label: f64,
    /// A high-level category.
    pub category: Category,
}

/// A group of [assigned](Assignment) points.
pub type Cluster = Vec<Assignment>;

/// An instance of the FuzzyDBSCAN algorithm.
///
/// Note that when setting `eps_min = eps_max` and `pts_min = pts_max` the algorithm will reduce to classic DBSCAN.
#[wasm_bindgen]
pub struct FuzzyDBSCAN {
    /// The minimum fuzzy local neighborhood radius.
    pub eps_min: f64,
    /// The maximum fuzzy local neighborhood radius.
    pub eps_max: f64,
    /// The minimum fuzzy neighborhood density (number of points).
    pub pts_min: f64,
    /// The maximum fuzzy neighborhood density (number of points).
    pub pts_max: f64,
}

#[cfg(all(target_arch = "wasm32", target_os = "unknown"))]
#[wasm_bindgen]
impl FuzzyDBSCAN {
    /// Creates a new instance of the algorithm.
    #[wasm_bindgen(constructor)]
    pub fn new() -> Self {
        FuzzyDBSCAN {
            eps_min: f64::NAN,
            eps_max: f64::NAN,
            pts_min: f64::NAN,
            pts_max: f64::NAN,
        }
    }

    /// Clusters a list of `js_points`.
    pub fn cluster(&self, js_points: JsValue) -> JsValue {
        let points: Vec<JsPoint> = js_points.into_serde().unwrap();
        let clusters = self.fuzzy_dbscan(&points);
        JsValue::from_serde(&clusters).unwrap()
    }
}

#[cfg(not(target_arch = "wasm32"))]
impl FuzzyDBSCAN {
    /// Clusters a list of `points`.
    pub fn cluster<P: MetricSpace>(&self, points: &[P]) -> Vec<Cluster> {
        self.fuzzy_dbscan(points)
    }
}

impl FuzzyDBSCAN {
    fn fuzzy_dbscan<P: MetricSpace>(&self, points: &[P]) -> Vec<Cluster> {
        let mut clusters = Vec::new();
        let mut noise_cluster = Vec::new();
        let mut visited = vec![false; points.len()];
        for point_index in 0..points.len() {
            if visited[point_index] {
                continue;
            }
            visited[point_index] = true;
            let neighbor_indices = self.region_query(points, point_index);
            let point_label = self.mu_min_p(self.density(point_index, &neighbor_indices, points));
            if point_label == 0.0 {
                noise_cluster.push(Assignment {
                    index: point_index,
                    category: Category::Noise,
                    label: 1.0,
                });
            } else {
                clusters.push(self.expand_cluster_fuzzy(
                    point_label,
                    point_index,
                    neighbor_indices,
                    points,
                    &mut visited,
                ));
            }
        }
        if !noise_cluster.is_empty() {
            clusters.push(noise_cluster);
        }
        clusters
    }

    fn expand_cluster_fuzzy<P: MetricSpace>(
        &self,
        point_label: f64,
        point_index: usize,
        mut neighbor_indices: HashSet<usize>,
        points: &[P],
        visited: &mut [bool],
    ) -> Vec<Assignment> {
        let mut cluster = vec![Assignment {
            index: point_index,
            category: Category::Core,
            label: point_label,
        }];
        let mut border_points = Vec::new();
        let mut neighbor_visited = vec![false; points.len()];
        while let Some(neighbor_index) = take_arbitrary(&mut neighbor_indices) {
            neighbor_visited[neighbor_index] = true;
            visited[neighbor_index] = true;
            let neighbor_neighbor_indices = self.region_query(points, neighbor_index);
            let neighbor_label =
                self.mu_min_p(self.density(neighbor_index, &neighbor_neighbor_indices, points));
            if neighbor_label > 0.0 {
                for neighbor_neighbor_index in neighbor_neighbor_indices {
                    if !neighbor_visited[neighbor_neighbor_index] {
                        neighbor_indices.insert(neighbor_neighbor_index);
                    }
                }
                cluster.push(Assignment {
                    index: neighbor_index,
                    category: Category::Core,
                    label: neighbor_label,
                });
            } else {
                border_points.push(Assignment {
                    index: neighbor_index,
                    category: Category::Border,
                    label: f64::MAX,
                });
            }
        }
        for border_point in &mut border_points {
            for cluster_point in &cluster {
                let mu_distance =
                    self.mu_distance(&points[border_point.index], &points[cluster_point.index]);
                if mu_distance > 0.0 {
                    border_point.label =
                        cluster_point.label.min(mu_distance).min(border_point.label);
                }
            }
        }
        cluster.append(&mut border_points);
        cluster
    }

    fn region_query<P: MetricSpace>(&self, points: &[P], point_index: usize) -> HashSet<usize> {
        points
            .iter()
            .enumerate()
            .filter(|(neighbor_index, neighbor_point)| {
                *neighbor_index != point_index
                    && neighbor_point.distance(&points[point_index]) <= self.eps_max
            }).map(|(neighbor_index, _)| neighbor_index)
            .collect() //TODO: would be neat to prevent this allocation.
    }

    fn density<P: MetricSpace>(
        &self,
        point_index: usize,
        neighbor_indices: &HashSet<usize>,
        points: &[P],
    ) -> f64 {
        1.0 + neighbor_indices.iter().fold(0.0, |sum, &neighbor_index| {
            sum + self.mu_distance(&points[point_index], &points[neighbor_index])
        })
    }

    fn mu_min_p(&self, n: f64) -> f64 {
        if n >= self.pts_max {
            1.0
        } else if n < self.pts_min {
            0.0
        } else {
            (n - self.pts_min) / (self.pts_max - self.pts_min)
        }
    }

    fn mu_distance<P: MetricSpace>(&self, a: &P, b: &P) -> f64 {
        let distance = a.distance(b);
        if distance <= self.eps_min {
            1.0
        } else if distance > self.eps_max {
            0.0
        } else {
            (self.eps_max - distance) / (self.eps_max - self.eps_min)
        }
    }
}