1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use std::alloc::{GlobalAlloc, Layout};
use std::sync::atomic::{AtomicU64, AtomicUsize, Ordering};

use crate::{SaveToStatsFolder, Sensor};

/// A [`Sensor`](crate::Sensor) that records the allocations made by the test
/// function.
///
/// It can only be used when the `#[global_allocator]` is a value of type
/// [`CountingAllocator<A>`](self::CountingAllocator).
///
/// Its [observations](crate::Sensor::Observations) are a tuple `(u64, u64)`
/// where the first element is the number of allocations performed and the
/// second element is the amount of bytes that were allocated.
///
/// # Example
///
/// ```rust
/// use std::alloc::System;
/// use fuzzcheck::{Arguments, ReasonForStopping, PoolExt};
/// use fuzzcheck::sensors_and_pools::{CountingAllocator, AllocationSensor, MaximiseObservationPool, DifferentObservations};
///
/// // set the global allocator to CountingAllocator so that the allocation sensor
/// // can retrieve allocation data
/// #[global_allocator]
/// static alloc: CountingAllocator<System> = CountingAllocator(System);
///
/// // This function fails on the very specific input `[98, 18, 9, 203, 45, 165]`.
/// // For every matching element, an integer is allocated on the heap and pushed to a vector.
/// // By trying to maximise the number of allocations, the fuzzer can incrementally find the failing input.
/// fn test_function(xs: &[u8]) -> bool {
///     if xs.len() == 6 {
///         let mut v = vec![];
///
///         if xs[0] == 98  { v.push(Box::new(0)) }
///         if xs[1] == 18  { v.push(Box::new(1)) }
///         if xs[2] == 9   { v.push(Box::new(2)) }
///         if xs[3] == 203 { v.push(Box::new(3)) }
///         if xs[4] == 45  { v.push(Box::new(4)) }
///         if xs[5] == 165 { v.push(Box::new(5)) }
///
///         v.len() != 6
///     } else {
///         true
///     }
/// }
/// let sensor = AllocationSensor::default();
///
/// // The sensor can be paired with any pool which is compatible with
/// // observations of type `(u64, u64)`. For example, we can use the following
/// // pool to maximise both elements of the tuple.
/// let pool =
///     MaximiseObservationPool::<u64>::new("alloc_blocks")
///     .and(
///         MaximiseObservationPool::<u64>::new("alloc_bytes"),
///         None,
///         DifferentObservations
///     );
///
/// // then launch fuzzcheck with this sensor and pool
/// let result = fuzzcheck::fuzz_test(test_function)
///     .default_mutator()
///     .serde_serializer()
///     .sensor_and_pool(sensor, pool)
///     .arguments(Arguments::for_internal_documentation_test())
///     .stop_after_first_test_failure(true)
///     .launch();
///
/// assert!(matches!(
///     result.reason_for_stopping,
///     ReasonForStopping::TestFailure(x)
///         if matches!(
///             x.as_slice(),
///             [98, 18, 9, 203, 45, 165]
///         )
/// ));
/// ```
#[derive(Default)]
pub struct AllocationSensor {
    start_allocs: AllocationsStats,
    end_allocs: AllocationsStats,
}

impl SaveToStatsFolder for AllocationSensor {
    #[no_coverage]
    fn save_to_stats_folder(&self) -> Vec<(std::path::PathBuf, Vec<u8>)> {
        vec![]
    }
}
impl Sensor for AllocationSensor {
    type Observations = (u64, u64);

    #[no_coverage]
    fn start_recording(&mut self) {
        self.start_allocs = get_allocation_stats();
    }

    #[no_coverage]
    fn stop_recording(&mut self) {
        self.end_allocs = get_allocation_stats();
    }

    #[no_coverage]
    fn get_observations(&mut self) -> Self::Observations {
        let blocks = self.end_allocs.total_blocks - self.start_allocs.total_blocks;
        let bytes = self.end_allocs.total_bytes - self.start_allocs.total_bytes;

        (blocks, bytes)
    }
}

// ===== ALLOCATOR =====

static mut ALLOC_STATS: InternalAllocationStats = InternalAllocationStats::new();

#[derive(Default)]
struct InternalAllocationStats {
    /// Total number of allocated blocks. Does not decrease after a deallocation.
    total_blocks: AtomicU64,
    /// Total amount of allocated bytes. Does not decrease after a deallocation.
    total_bytes: AtomicU64,

    /// Number of allocated blocks currently. Decreases after a deallocation.
    curr_blocks: AtomicUsize,
    /// Amount of allocated bytes currently. Decreases after a deallocation.
    curr_bytes: AtomicUsize,
}
impl InternalAllocationStats {
    #[no_coverage]
    const fn new() -> Self {
        Self {
            total_blocks: AtomicU64::new(0),
            total_bytes: AtomicU64::new(0),
            curr_blocks: AtomicUsize::new(0),
            curr_bytes: AtomicUsize::new(0),
        }
    }
}

impl InternalAllocationStats {
    #[no_coverage]
    fn realloc(&mut self, size: usize, shrink: bool, delta: usize) {
        self.total_blocks.fetch_add(1, Ordering::Relaxed);
        self.total_bytes.fetch_add(size as u64, Ordering::Relaxed);
        if shrink {
            self.curr_bytes.fetch_sub(delta, Ordering::Relaxed);
        } else {
            self.curr_bytes.fetch_add(delta, Ordering::Relaxed);
        }
    }
    #[no_coverage]
    fn alloc(&mut self, size: usize) {
        self.total_blocks.fetch_add(1, Ordering::Relaxed);
        self.total_bytes.fetch_add(size as u64, Ordering::Relaxed);

        self.curr_blocks.fetch_add(1, Ordering::Relaxed);
        self.curr_bytes.fetch_add(size, Ordering::Relaxed);
    }

    #[no_coverage]
    fn dealloc(&mut self, size: usize) {
        self.curr_blocks.fetch_sub(1, Ordering::Relaxed);
        self.curr_bytes.fetch_sub(size, Ordering::Relaxed);
    }
}

/// A global allocator that counts the total number of allocations as well as
/// the total number of allocated bytes.
///
/// Its only purpose is to be used with an [`AllocationSensor`].
///
/// Its argument is the underlying global allocator. For example, to use
/// with the system allocator:
/// ```
/// use std::alloc::System;
/// use fuzzcheck::sensors_and_pools::{CountingAllocator};
///
/// #[global_allocator]
/// static alloc: CountingAllocator<System> = CountingAllocator(System);
/// ```
#[derive(Debug)]
pub struct CountingAllocator<A>(pub A)
where
    A: GlobalAlloc;

unsafe impl<A> GlobalAlloc for CountingAllocator<A>
where
    A: GlobalAlloc,
{
    #[no_coverage]
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        let ptr = self.0.alloc(layout);
        if ptr.is_null() {
            return ptr;
        }
        let size = layout.size();
        ALLOC_STATS.alloc(size);
        ptr
    }

    #[no_coverage]
    unsafe fn realloc(&self, old_ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
        let new_ptr = self.0.realloc(old_ptr, layout, new_size);
        if new_ptr.is_null() {
            return new_ptr;
        }
        let old_size = layout.size();
        let (shrink, delta) = if new_size < old_size {
            (true, old_size - new_size)
        } else {
            (false, new_size - old_size)
        };
        ALLOC_STATS.realloc(new_size, shrink, delta);
        new_ptr
    }
    #[no_coverage]
    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        self.0.dealloc(ptr, layout);

        let size = layout.size();
        ALLOC_STATS.dealloc(size);
    }
}

#[derive(Default)]
struct AllocationsStats {
    /// Total number of allocated blocks. Does not decrease after a deallocation.
    total_blocks: u64,
    /// Total number of allocated bytes. Does not decrease after a deallocation.
    total_bytes: u64,
    // /// Number of currently allocated blocks. Decreases after a deallocation.
    // curr_blocks: usize,
    // /// Number of currently allocated bytes. Decreases after a deallocation.
    // curr_bytes: usize,
}

#[no_coverage]
fn get_allocation_stats() -> AllocationsStats {
    unsafe {
        AllocationsStats {
            total_blocks: ALLOC_STATS.total_blocks.load(Ordering::SeqCst),
            total_bytes: ALLOC_STATS.total_bytes.load(Ordering::SeqCst),
            // curr_blocks: ALLOC_STATS.curr_blocks.load(Ordering::SeqCst),
            // curr_bytes: ALLOC_STATS.curr_bytes.load(Ordering::SeqCst),
        }
    }
}