1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//! Asynchronous sinks
//!
//! This module contains the `Sink` trait, along with a number of adapter types
//! for it. An overview is available in the documentaiton for the trait itself.
//!
//! You can find more information/tutorials about streams [online at
//! https://tokio.rs][online]
//!
//! [online]: https://tokio.rs/docs/getting-started/streams-and-sinks/

use {IntoFuture, Poll, StartSend};
use stream::Stream;

mod with;
// mod with_map;
// mod with_filter;
// mod with_filter_map;
mod flush;
mod send;
mod send_all;

if_std! {
    mod buffer;

    pub use self::buffer::Buffer;

    // TODO: consider expanding this via e.g. FromIterator
    impl<T> Sink for ::std::vec::Vec<T> {
        type SinkItem = T;
        type SinkError = (); // Change this to ! once it stabilizes

        fn start_send(&mut self, item: Self::SinkItem)
                      -> StartSend<Self::SinkItem, Self::SinkError>
        {
            self.push(item);
            Ok(::AsyncSink::Ready)
        }

        fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
            Ok(::Async::Ready(()))
        }
    }

    /// A type alias for `Box<Stream + Send>`
    pub type BoxSink<T, E> = ::std::boxed::Box<Sink<SinkItem = T, SinkError = E> +
                                               ::core::marker::Send>;

    impl<S: ?Sized + Sink> Sink for ::std::boxed::Box<S> {
        type SinkItem = S::SinkItem;
        type SinkError = S::SinkError;

        fn start_send(&mut self, item: Self::SinkItem)
                      -> StartSend<Self::SinkItem, Self::SinkError> {
            (**self).start_send(item)
        }

        fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
            (**self).poll_complete()
        }
    }
}

pub use self::with::With;
pub use self::flush::Flush;
pub use self::send::Send;
pub use self::send_all::SendAll;

/// A `Sink` is a value into which other values can be sent, asynchronously.
///
/// Basic examples of sinks include the sending side of:
///
/// - Channels
/// - Sockets
/// - Pipes
///
/// In addition to such "primitive" sinks, it's typical to layer additional
/// functionality, such as buffering, on top of an existing sink.
///
/// Sending to a sink is "asynchronous" in the sense that the value may not be
/// sent in its entirety immediately. Instead, values are sent in a two-phase
/// way: first by initiating a send, and then by polling for completion. This
/// two-phase setup is analogous to buffered writing in synchronous code, where
/// writes often succeed immediately, but internally are buffered and are
/// *actually* written only upon flushing.
///
/// In addition, the `Sink` may be *full*, in which case it is not even possible
/// to start the sending process.
///
/// As with `Future` and `Stream`, the `Sink` trait is built from a few core
/// required methods, and a host of default methods for working in a
/// higher-level way. The `Sink::send_all` combinator is of particular
/// importance: you can use it to send an entire stream to a sink, which is
/// the simplest way to ultimately consume a sink.
///
/// You can find more information/tutorials about streams [online at
/// https://tokio.rs][online]
///
/// [online]: https://tokio.rs/docs/getting-started/streams-and-sinks/
pub trait Sink {
    /// The type of value that the sink accepts.
    type SinkItem;

    /// The type of value produced by the sink when an error occurs.
    type SinkError;

    /// Begin the process of sending a value to the sink.
    ///
    /// As the name suggests, this method only *begins* the process of sending
    /// the item. If the sink employs buffering, the item isn't fully processed
    /// until the buffer is fully flushed. Since sinks are designed to work with
    /// asynchronous I/O, the process of actually writing out the data to an
    /// underlying object takes place asynchronously. **You *must* use
    /// `poll_complete` in order to drive completion of a send**. In particular,
    /// `start_send` does not begin the flushing process
    ///
    /// # Return value
    ///
    /// This method returns `AsyncSink::Ready` if the sink was able to start
    /// sending `item`. In that case, you *must* ensure that you call
    /// `poll_complete` to process the sent item to completion. Note, however,
    /// that several calls to `start_send` can be made prior to calling
    /// `poll_complete`, which will work on completing all pending items.
    ///
    /// The method returns `AsyncSink::NotReady` if the sink was unable to begin
    /// sending, usually due to being full. The sink must have attempted to
    /// complete processing any outstanding requests (equivalent to
    /// `poll_complete`) before yielding this result. The current task will be
    /// automatically scheduled for notification when the sink may be ready to
    /// receive new values.
    ///
    /// # Errors
    ///
    /// If the sink encounters an error other than being temporarily full, it
    /// uses the `Err` variant to signal that error. In most cases, such errors
    /// mean that the sink will permanently be unable to receive items.
    ///
    /// # Panics
    ///
    /// This method may panic in a few situations, depending on the specific
    /// sink:
    ///
    /// - It is called outside of the context of a task.
    /// - A previous call to `start_send` or `poll_complete` yielded a permanent
    /// error.
    fn start_send(&mut self, item: Self::SinkItem)
                  -> StartSend<Self::SinkItem, Self::SinkError>;

    /// Make progress on all pending requests, and determine whether they have
    /// completed.
    ///
    /// Since sinks are asynchronous, no single method completes all of their
    /// work in one shot. Instead, you use `poll_complete` to repeatedly drive
    /// the sink to make progress on requests (such as `start_send`). As with
    /// `Future::poll`, if the pending requests are not able to complete during
    /// this call, the current task is automatically scheduled to be woken up
    /// again once more progress is possible.
    ///
    /// # Return value
    ///
    /// Returns `Ok(Async::Ready(()))` when no unprocessed requests remain.
    ///
    /// Returns `Ok(Async::NotReady)` if there is more work left to do, in which
    /// case the current task is scheduled to wake up when more progress may be
    /// possible.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the sink encounters an error while processing one of
    /// its pending requests. Due to the buffered nature of requests, it is not
    /// generally possible to correlate the error with a particular request. As
    /// with `start_send`, these errors are generally "fatal" for continued use
    /// of the sink.
    ///
    /// # Panics
    ///
    /// This method may panic in a few situations, depending on the specific sink:
    ///
    /// - It is called outside of the context of a task.
    /// - A previous call to `start_send` or `poll_complete` yielded a permanent
    /// error.
    fn poll_complete(&mut self) -> Poll<(), Self::SinkError>;

    /// Composes a function *in front of* the sink.
    ///
    /// This adapter produces a new sink that passes each value through the
    /// given function `f` before sending it to `self`.
    ///
    /// To process each value, `f` produces a *future*, which is then polled to
    /// completion before passing its result down to the underlying sink. If the
    /// future produces an error, that error is returned by the new sink.
    ///
    /// Note that this function consumes the given sink, returning a wrapped
    /// version, much like `Iterator::map`.
    fn with<U, F, Fut>(self, f: F) -> With<Self, U, F, Fut>
        where F: FnMut(U) -> Fut,
              Fut: IntoFuture<Item = Self::SinkItem>,
              Fut::Error: From<Self::SinkError>,
              Self: Sized
    {
        with::new(self, f)
    }

    /*
    fn with_map<U, F>(self, f: F) -> WithMap<Self, U, F>
        where F: FnMut(U) -> Self::SinkItem,
              Self: Sized;

    fn with_filter<F>(self, f: F) -> WithFilter<Self, F>
        where F: FnMut(Self::SinkItem) -> bool,
              Self: Sized;

    fn with_filter_map<U, F>(self, f: F) -> WithFilterMap<Self, U, F>
        where F: FnMut(U) -> Option<Self::SinkItem>,
              Self: Sized;
     */

    /// Adds a fixed-size buffer to the current sink.
    ///
    /// The resulting sink will buffer up to `amt` items when the underlying
    /// sink is unwilling to accept additional items. Calling `poll_complete` on
    /// the buffered sink will attempt to both empty the buffer and complete
    /// processing on the underlying sink.
    ///
    /// Note that this function consumes the given sink, returning a wrapped
    /// version, much like `Iterator::map`.
    ///
    /// This method is only available when the `use_std` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "use_std")]
    fn buffer(self, amt: usize) -> Buffer<Self>
        where Self: Sized
    {
        buffer::new(self, amt)
    }

    /// A future that completes when the sink has finished processing all
    /// pending requests.
    ///
    /// The sink itself is returned after flushing is complete; this adapter is
    /// intended to be used when you want to stop sending to the sink until
    /// all current requests are processed.
    fn flush(self) -> Flush<Self>
        where Self: Sized
    {
        flush::new(self)
    }

    /// A future that completes after the given item has been fully processed
    /// into the sink, including flushing.
    ///
    /// Note that, **because of the flushing requirement, it is usually better
    /// to batch together items to send via `send_all`, rather than flushing
    /// between each item.**
    ///
    /// On completion, the sink is returned.
    fn send(self, item: Self::SinkItem) -> Send<Self>
        where Self: Sized
    {
        send::new(self, item)
    }

    /// A future that completes after the given stream has been fully processed
    /// into the sink, including flushing.
    ///
    /// This future will drive the stream to keep producing items until it is
    /// exhausted, sending each item to the sink. It will complete once both the
    /// stream is exhausted, and the sink has fully processed and flushed all of
    /// the items sent to it.
    ///
    /// Doing `sink.send_all(stream)` is roughly equivalent to
    /// `stream.forward(sink)`.
    ///
    /// On completion, the pair `(sink, source)` is returned.
    fn send_all<S>(self, stream: S) -> SendAll<Self, S>
        where S: Stream<Item = Self::SinkItem>,
              Self::SinkError: From<S::Error>,
              Self: Sized
    {
        send_all::new(self, stream)
    }
}

impl<'a, S: ?Sized + Sink> Sink for &'a mut S {
    type SinkItem = S::SinkItem;
    type SinkError = S::SinkError;

    fn start_send(&mut self, item: Self::SinkItem)
                  -> StartSend<Self::SinkItem, Self::SinkError> {
        (**self).start_send(item)
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        (**self).poll_complete()
    }
}