1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! Definition of the Shared combinator, a future that is cloneable,
//! and can be polled in multiple threads.
//!
//! # Examples
//!
//! ```
//! use futures::future::*;
//!
//! let future = ok::<_, bool>(6);
//! let shared1 = future.shared();
//! let shared2 = shared1.clone();
//! assert_eq!(6, *shared1.wait().unwrap());
//! assert_eq!(6, *shared2.wait().unwrap());
//! ```

use std::mem;
use std::sync::{Arc, Mutex};
use std::ops::Deref;
use std::collections::HashMap;
use std::vec::Vec;

use {Future, Poll, Async};
use task;

/// A future that is cloneable and can be polled in multiple threads.
/// Use Future::shared() method to convert any future into a `Shared` future.
#[must_use = "futures do nothing unless polled"]
pub struct Shared<F: Future> {
    id: u64,
    inner: Arc<Inner<F>>,
}

struct Inner<F: Future> {
    next_clone_id: Mutex<u64>,
    state: Mutex<State<F>>,
}

enum State<F: Future> {
    Waiting(Arc<Unparker>, F),
    Polling(Arc<Unparker>, Vec<task::Task>),
    Done(Result<Arc<F::Item>, Arc<F::Error>>),
}

impl<F> Shared<F>
    where F: Future
{
    /// Creates a new `Shared` from another future.
    pub fn new(future: F) -> Self {
        Shared {
            id: 0,
            inner: Arc::new(
                Inner {
                    next_clone_id: Mutex::new(1),
                    state: Mutex::new(State::Waiting(Arc::new(Unparker::new()), future)),
                }),
        }
    }
}

impl<F> Future for Shared<F>
    where F: Future
{
    type Item = SharedItem<F::Item>;
    type Error = SharedError<F::Error>;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let mut state = self.inner.state.lock().unwrap();
        let unparker = match *state {
            State::Waiting(ref unparker, ref _original_future) => {
                let mut unparker_inner = unparker.inner.lock().unwrap();
                if unparker_inner.original_future_needs_poll {
                    unparker_inner.original_future_needs_poll = false;
                    unparker.clone()
                } else {
                    unparker_inner.insert(self.id, task::park());
                    return Ok(Async::NotReady)
                }
            }
            State::Polling(ref unparker, ref mut waiters) => {
                // A clone of this `Shared` is currently calling `original_future.poll()`.
                let mut unparker_inner = unparker.inner.lock().unwrap();
                if unparker_inner.original_future_needs_poll {
                    // We need to poll the original future, but it's not here right now.
                    // So we store the current task to be unconditionally unparked once
                    // `state` is no longer `Polling`.
                    waiters.push(task::park());
                } else {
                    unparker_inner.insert(self.id, task::park());
                }
                return Ok(Async::NotReady)
            }
            State::Done(Ok(ref v)) => return Ok(SharedItem { item: v.clone() }.into()),
            State::Done(Err(ref e)) => return Err(SharedError { error: e.clone() }.into()),
        };

        let new_state = State::Polling(unparker, Vec::new());
        let (unparker, mut original_future) = match mem::replace(&mut *state, new_state) {
            State::Waiting(unparker, original_future) => (unparker, original_future),
            _ => unreachable!(),
        };
        drop(state);

        let event = task::UnparkEvent::new(unparker.clone(), 0);
        let new_state = match task::with_unpark_event(event, || original_future.poll()) {
            Ok(Async::NotReady) => State::Waiting(unparker, original_future),
            Ok(Async::Ready(v)) => State::Done(Ok(Arc::new(v))),
            Err(e) => State::Done(Err(Arc::new(e))),
        };

        let (call_unpark, result) = match new_state {
            State::Waiting(..) => (false, Ok(Async::NotReady)),
            State::Polling(..) => unreachable!(),
            State::Done(Ok(ref v)) => (true, Ok(SharedItem { item: v.clone() }.into())),
            State::Done(Err(ref e)) => (true, Err(SharedError { error: e.clone() }.into())),
        };

        let mut state = self.inner.state.lock().unwrap();
        match mem::replace(&mut *state, new_state) {
            State::Polling(unparker, waiters) => {
                if call_unpark { unparker.unpark() }
                for waiter in waiters {
                    waiter.unpark();
                }
            }
            _ => unreachable!(),
        }

        result
    }
}

impl<F> Clone for Shared<F>
    where F: Future
{
    fn clone(&self) -> Self {
        let mut next_clone_id = self.inner.next_clone_id.lock().unwrap();
        let clone_id = *next_clone_id;
        *next_clone_id += 1;
        Shared {
            id: clone_id,
            inner: self.inner.clone(),
        }
    }
}

impl<F: Future> Drop for Shared<F> {
    fn drop(&mut self) {
        if let Ok(state) = self.inner.state.lock() {
            match *state {
                State::Waiting(ref unparker, _) => {
                    unparker.remove(self.id);
                }
                State::Polling(ref unparker, _) => {
                    unparker.remove(self.id);
                }
                State::Done(_) => (),
            }
        }
    }
}

/// A wrapped item of the original future that is clonable and implements Deref
/// for ease of use.
#[derive(Debug)]
pub struct SharedItem<T> {
    item: Arc<T>,
}

impl<T> Deref for SharedItem<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.item.as_ref()
    }
}

/// A wrapped error of the original future that is clonable and implements Deref
/// for ease of use.
#[derive(Debug)]
pub struct SharedError<E> {
    error: Arc<E>,
}

impl<E> Deref for SharedError<E> {
    type Target = E;

    fn deref(&self) -> &E {
        &self.error.as_ref()
    }
}

/// An `EventSet` implementation for passing to `with_unpark_event()` when a `Shared`
/// polls its underlying future. Usually, the purpose of an `EventSet` implementation
/// is to gather precise information about what triggered an unpark, but that is *not*
/// what this implementation does. Instead, it uses `EventSet::insert()` as a hook
/// to unpark a set of waiting tasks.
struct Unparker {
    inner: Mutex<UnparkerInner>,
}

struct UnparkerInner {
    original_future_needs_poll: bool,

    /// Tasks that need to be unparked once the original future resolves.
    tasks: HashMap<u64, task::Task>,
}

impl UnparkerInner {
    fn insert(&mut self, idx: u64, task: task::Task) {
        self.tasks.insert(idx, task);
    }
}

impl task::EventSet for Unparker {
    fn insert(&self, _id: usize) {
        // The original future is ready to get polled again.
        self.unpark();
    }
}

impl Unparker {
    fn new() -> Unparker {
        Unparker {
            inner: Mutex::new(UnparkerInner{
                original_future_needs_poll: true,
                tasks: HashMap::new(),
            }),
        }
    }

    fn remove(&self, idx: u64) {
        if let Ok(mut inner) = self.inner.lock() {
            inner.tasks.remove(&idx);
        }
    }

    fn unpark(&self) {
        let UnparkerInner { tasks, .. } = mem::replace(
            &mut *self.inner.lock().unwrap(),
            UnparkerInner {
                original_future_needs_poll: true,
                tasks: HashMap::new(),
            });

        for (_, task) in tasks {
            task.unpark();
        }
    }
}