1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! A simple crate for executing work on a thread pool, and getting back a
//! future.
//!
//! This crate provides a simple thread pool abstraction for running work
//! externally from the current thread that's running. An instance of `Future`
//! is handed back to represent that the work may be done later, and further
//! computations can be chained along with it as well.
//!
//! ```rust
//! extern crate futures;
//! extern crate futures_spawn;
//! extern crate futures_threadpool;
//!
//! use futures::Future;
//! use futures_spawn::SpawnHelper;
//! use futures_threadpool::ThreadPool;
//!
//! # fn long_running_future(a: u32) -> futures::future::BoxFuture<u32, ()> {
//! #     futures::future::result(Ok(a)).boxed()
//! # }
//! # fn main() {
//!
//! // Create a worker thread pool with four threads
//! let pool = ThreadPool::new(4);
//!
//! // Execute some work on the thread pool, optionally closing over data.
//! let a = pool.spawn(long_running_future(2));
//! let b = pool.spawn(long_running_future(100));
//!
//! // Express some further computation once the work is completed on the thread
//! // pool.
//! let c = a.join(b).map(|(a, b)| a + b).wait().unwrap();
//!
//! // Print out the result
//! println!("{:?}", c);
//! # }
//! ```

#![deny(warnings, missing_docs)]

extern crate futures_spawn;
extern crate crossbeam;

#[macro_use]
extern crate futures;
extern crate num_cpus;

use std::panic::AssertUnwindSafe;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

use crossbeam::sync::MsQueue;
use futures::{Future, Poll, Async};
use futures::executor::{self, Run, Executor};
use futures_spawn::Spawn;

/// A thread pool intended to run CPU intensive work.
///
/// This thread pool will hand out futures representing the completed work
/// that happens on the thread pool itself, and the futures can then be later
/// composed with other work as part of an overall computation.
///
/// The worker threads associated with a thread pool are kept alive so long as
/// there is an open handle to the `ThreadPool` or there is work running on them. Once
/// all work has been drained and all references have gone away the worker
/// threads will be shut down.
///
/// Currently `ThreadPool` implements `Clone` which just clones a new reference to
/// the underlying thread pool.
///
/// **Note:** if you use ThreadPool inside a library it's better accept a
/// `Builder` object for thread configuration rather than configuring just
/// pool size.  This not only future proof for other settings but also allows
/// user to attach monitoring tools to lifecycle hooks.
pub struct ThreadPool {
    inner: Arc<Inner>,
}

/// Thread pool configuration object
///
/// Builder starts with a number of workers equal to the number
/// of CPUs on the host. But you can change it until you call `create()`.
pub struct Builder {
    pool_size: usize,
    name_prefix: Option<String>,
    after_start: Option<Arc<Fn() + Send + Sync>>,
    before_stop: Option<Arc<Fn() + Send + Sync>>,
}

struct MySender<F> {
    fut: F,
}

fn _assert() {
    fn _assert_send<T: Send>() {}
    fn _assert_sync<T: Sync>() {}
    _assert_send::<ThreadPool>();
    _assert_sync::<ThreadPool>();
}

struct Inner {
    queue: MsQueue<Message>,
    cnt: AtomicUsize,
    size: usize,
    after_start: Option<Arc<Fn() + Send + Sync>>,
    before_stop: Option<Arc<Fn() + Send + Sync>>,
}

enum Message {
    Run(Run),
    Close,
}

impl ThreadPool {
    /// Creates a new thread pool with `size` worker threads associated with it.
    ///
    /// The returned handle can use `execute` to run work on this thread pool,
    /// and clones can be made of it to get multiple references to the same
    /// thread pool.
    ///
    /// This is a shortcut for:
    /// ```rust
    /// Builder::new().pool_size(size).create()
    /// ```
    pub fn new(size: usize) -> ThreadPool {
        Builder::new().pool_size(size).create()
    }

    /// Creates a new thread pool with a number of workers equal to the number
    /// of CPUs on the host.
    ///
    /// This is a shortcut for:
    /// ```rust
    /// Builder::new().create()
    /// ```
    pub fn new_num_cpus() -> ThreadPool {
        Builder::new().create()
    }
}

impl<T> Spawn<T> for ThreadPool
    where T: Future<Item = (), Error = ()> + Send + 'static,
{
    fn spawn_detached(&self, f: T) {
        // AssertUnwindSafe is used here becuase `Send + 'static` is basically
        // an alias for an implementation of the `UnwindSafe` trait but we can't
        // express that in the standard library right now.
        let f = AssertUnwindSafe(f).catch_unwind();
        let sender = MySender { fut: f };
        executor::spawn(sender).execute(self.inner.clone());
    }
}

fn work(inner: &Inner) {
    inner.after_start.as_ref().map(|fun| fun());
    loop {
        match inner.queue.pop() {
            Message::Run(r) => r.run(),
            Message::Close => break,
        }
    }
    inner.before_stop.as_ref().map(|fun| fun());
}

impl Clone for ThreadPool {
    fn clone(&self) -> ThreadPool {
        self.inner.cnt.fetch_add(1, Ordering::Relaxed);
        ThreadPool { inner: self.inner.clone() }
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        if self.inner.cnt.fetch_sub(1, Ordering::Relaxed) == 1 {
            for _ in 0..self.inner.size {
                self.inner.queue.push(Message::Close);
            }
        }
    }
}

impl Executor for Inner {
    fn execute(&self, run: Run) {
        self.queue.push(Message::Run(run))
    }
}

impl<F: Future> Future for MySender<F> {
    type Item = ();
    type Error = ();

    fn poll(&mut self) -> Poll<(), ()> {
        match self.fut.poll() {
            Ok(Async::NotReady) => return Ok(Async::NotReady),
            _ => {}
        }

        Ok(Async::Ready(()))
    }
}

impl Builder {
    /// Create a builder a number of workers equal to the number
    /// of CPUs on the host.
    pub fn new() -> Builder {
        Builder {
            pool_size: num_cpus::get(),
            name_prefix: None,
            after_start: None,
            before_stop: None,
        }
    }

    /// Set size of a future ThreadPool
    ///
    /// The size of a thread pool is the number of worker threads spawned
    pub fn pool_size(&mut self, size: usize) -> &mut Self {
        self.pool_size = size;
        self
    }

    /// Set thread name prefix of a future ThreadPool
    ///
    /// Thread name prefix is used for generating thread names. For example, if prefix is
    /// `my-pool-`, then threads in the pool will get names like `my-pool-1` etc.
    pub fn name_prefix<S: Into<String>>(&mut self, name_prefix: S) -> &mut Self {
        self.name_prefix = Some(name_prefix.into());
        self
    }

    /// Execute function `f` right after each thread is started but before
    /// running any jobs on it
    ///
    /// This is initially intended for bookkeeping and monitoring uses
    pub fn after_start<F>(&mut self, f: F) -> &mut Self
        where F: Fn() + Send + Sync + 'static
    {
        self.after_start = Some(Arc::new(f));
        self
    }

    /// Execute function `f` before each worker thread stops
    ///
    /// This is initially intended for bookkeeping and monitoring uses
    pub fn before_stop<F>(&mut self, f: F) -> &mut Self
        where F: Fn() + Send + Sync + 'static
    {
        self.before_stop = Some(Arc::new(f));
        self
    }

    /// Create ThreadPool with configured parameters
    pub fn create(&mut self) -> ThreadPool {
        let pool = ThreadPool {
            inner: Arc::new(Inner {
                queue: MsQueue::new(),
                cnt: AtomicUsize::new(1),
                size: self.pool_size,
                after_start: self.after_start.clone(),
                before_stop: self.before_stop.clone(),
            }),
        };
        assert!(self.pool_size > 0);

        for counter in 0..self.pool_size {
            let inner = pool.inner.clone();
            let mut thread_builder = thread::Builder::new();
            if let Some(ref name_prefix) = self.name_prefix {
                thread_builder = thread_builder.name(format!("{}{}", name_prefix, counter));
            }
            thread_builder.spawn(move || work(&inner)).unwrap();
        }

        return pool
    }
}