1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use crate::{ErrorHandler, RetryPolicy};
use futures::{ready, TryFuture};
use pin_project_lite::pin_project;
use std::{
    future::Future,
    marker::Unpin,
    pin::Pin,
    task::{Context, Poll},
};
use tokio::time;

/// A factory trait used to create futures.
///
/// We need a factory for the retry logic because when (and if) a future returns an error, its
/// internal state is undefined and we can't poll on it anymore. Hence we need to create a new one.
///
/// By the way, this trait is implemented for any closure that returns a `Future`, so you don't
/// have to write your own type and implement it to handle some simple cases.
pub trait FutureFactory {
    /// An future type that is created by the `new` method.
    type FutureItem: TryFuture;

    /// Creates a new future. We don't need the factory to be immutable so we pass `self` as a
    /// mutable reference.
    fn new(&mut self) -> Self::FutureItem;
}

impl<T, F> FutureFactory for T
where
    T: Unpin + FnMut() -> F,
    F: TryFuture,
{
    type FutureItem = F;

    #[allow(clippy::new_ret_no_self)]
    fn new(&mut self) -> F {
        (self)()
    }
}

pin_project! {
    /// A future that transparently launches an underlying future (created by a provided factory each
    /// time) as many times as needed to get things done.
    ///
    /// It is useful fot situations when you need to make several attempts, e.g. for establishing
    /// connections, RPC calls.
    ///
    /// There is also a type to handle `Stream` errors: [`StreamRetry`](struct.StreamRetry.html).#[pin_project]
    pub struct FutureRetry<F, R>
    where
        F: FutureFactory,
    {
        factory: F,
        error_action: R,
        attempt: usize,
        #[pin]
        state: RetryState<F::FutureItem>,
    }
}

pin_project! {
    #[project = RetryStateProj]
    enum RetryState<F> {
        NotStarted,
        WaitingForFuture { #[pin] future: F },
        TimerActive { #[pin] delay: time::Sleep },
    }
}

impl<F: FutureFactory, R> FutureRetry<F, R> {
    /// Creates a `FutureRetry` using a provided factory and an object of `ErrorHandler` type that
    /// decides on a retry-policy depending on an encountered error.
    ///
    /// Please refer to the `tcp-client` example in the `examples` folder to have a look at a
    /// possible usage.
    ///
    /// # Arguments
    ///
    /// * `factory`: a factory that creates futures,
    /// * `error_action`: a type that handles an error and decides which route to take: simply
    ///                   try again, wait and then try, or give up (on a critical error for
    ///                   exapmle).
    pub fn new(factory: F, error_action: R) -> Self {
        Self {
            factory,
            error_action,
            state: RetryState::NotStarted,
            attempt: 1,
        }
    }
}

impl<F: FutureFactory, R> Future for FutureRetry<F, R>
where
    R: ErrorHandler<<F::FutureItem as TryFuture>::Error>,
{
    type Output =
        Result<(<<F as FutureFactory>::FutureItem as TryFuture>::Ok, usize), (R::OutError, usize)>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        loop {
            let this = self.as_mut().project();
            let attempt = *this.attempt;
            let new_state = match this.state.project() {
                RetryStateProj::NotStarted => RetryState::WaitingForFuture {
                    future: this.factory.new(),
                },
                RetryStateProj::TimerActive { delay } => {
                    ready!(delay.poll(cx));
                    RetryState::WaitingForFuture {
                        future: this.factory.new(),
                    }
                }
                RetryStateProj::WaitingForFuture { future } => match ready!(future.try_poll(cx)) {
                    Ok(x) => {
                        this.error_action.ok(attempt);
                        *this.attempt = 1;
                        return Poll::Ready(Ok((x, attempt)));
                    }
                    Err(e) => {
                        *this.attempt += 1;
                        match this.error_action.handle(attempt, e) {
                            RetryPolicy::ForwardError(e) => return Poll::Ready(Err((e, attempt))),
                            RetryPolicy::Repeat => RetryState::WaitingForFuture {
                                future: this.factory.new(),
                            },
                            RetryPolicy::WaitRetry(duration) => RetryState::TimerActive {
                                delay: time::sleep(duration),
                            },
                        }
                    }
                },
            };

            self.as_mut().project().state.set(new_state);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures::{
        future::{err, ok},
        TryFutureExt,
    };
    use std::time::Duration;

    /// Just a help type for the tests.
    struct FutureIterator<F>(F);

    impl<I, F> FutureFactory for FutureIterator<I>
    where
        I: Unpin + Iterator<Item = F>,
        F: TryFuture,
    {
        type FutureItem = F;

        /// # Warning
        ///
        /// Will panic if there is no *next* future.
        fn new(&mut self) -> Self::FutureItem {
            self.0.next().expect("No more futures!")
        }
    }

    #[tokio::test]
    async fn naive() {
        let f = FutureRetry::new(|| ok::<_, u8>(1u8), |_| RetryPolicy::Repeat::<u8>);
        assert_eq!(Ok((1u8, 1)), f.await);
    }

    #[tokio::test]
    async fn naive_error_forward() {
        let f = FutureRetry::new(|| err::<u8, _>(1u8), RetryPolicy::ForwardError);
        assert_eq!(Err((1u8, 1)), f.await);
    }

    #[tokio::test]
    async fn more_complicated_wait() {
        let f = FutureRetry::new(FutureIterator(vec![err(2u8), ok(3u8)].into_iter()), |_| {
            RetryPolicy::WaitRetry::<u8>(Duration::from_millis(10))
        })
        .into_future();
        assert_eq!(Ok((3, 2)), f.await);
    }

    #[tokio::test]
    async fn more_complicated_repeat() {
        let f = FutureRetry::new(FutureIterator(vec![err(2u8), ok(3u8)].into_iter()), |_| {
            RetryPolicy::Repeat::<u8>
        });
        assert_eq!(Ok((3u8, 2)), f.await);
    }

    #[tokio::test]
    async fn more_complicated_forward() {
        let f = FutureRetry::new(
            FutureIterator(vec![err(2u8), ok(3u8)].into_iter()),
            RetryPolicy::ForwardError,
        );
        assert_eq!(Err((2u8, 1)), f.await);
    }
}