1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// vim: tw=80

use super::FutState;
#[cfg(feature = "tokio")]
use futures::FutureExt;
use futures::{
    channel::oneshot,
    task::{Context, Poll},
    Future,
};
use std::{
    cell::UnsafeCell,
    clone::Clone,
    collections::VecDeque,
    ops::{Deref, DerefMut},
    pin::Pin,
    sync,
};

/// An RAII mutex guard, much like `std::sync::MutexGuard`.  The wrapped data
/// can be accessed via its `Deref` and `DerefMut` implementations.
#[derive(Debug)]
pub struct MutexGuard<T: ?Sized> {
    mutex: Mutex<T>,
}

impl<T: ?Sized> Drop for MutexGuard<T> {
    fn drop(&mut self) {
        self.mutex.unlock();
    }
}

impl<T: ?Sized> Deref for MutexGuard<T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.mutex.inner.data.get() }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.mutex.inner.data.get() }
    }
}

/// A `Future` representing a pending `Mutex` acquisition.
pub struct MutexFut<T: ?Sized> {
    state: FutState,
    mutex: Mutex<T>,
}

impl<T: ?Sized> MutexFut<T> {
    fn new(state: FutState, mutex: Mutex<T>) -> Self {
        MutexFut { state, mutex }
    }
}

impl<T: ?Sized> Drop for MutexFut<T> {
    fn drop(&mut self) {
        match &mut self.state {
            &mut FutState::New => {
                // Mutex hasn't yet been modified; nothing to do
            }
            &mut FutState::Pending(ref mut rx) => {
                rx.close();
                match rx.try_recv() {
                    Ok(Some(())) => {
                        // This future received ownership of the mutex, but got
                        // dropped before it was ever polled.  Release the
                        // mutex.
                        self.mutex.unlock()
                    }
                    Ok(None) => {
                        // Dropping the Future before it acquires the Mutex is
                        // equivalent to cancelling it.
                    }
                    Err(oneshot::Canceled) => {
                        // Never received ownership of the mutex
                    }
                }
            }
            &mut FutState::Acquired => {
                // The MutexGuard will take care of releasing the Mutex
            }
        }
    }
}

impl<T: ?Sized> Future for MutexFut<T> {
    type Output = MutexGuard<T>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let (result, new_state) = match &mut self.state {
            &mut FutState::New => {
                let mut mtx_data = self.mutex.inner.mutex.lock().expect("sync::Mutex::lock");
                if mtx_data.owned {
                    let (tx, mut rx) = oneshot::channel::<()>();
                    mtx_data.waiters.push_back(tx);
                    // Even though we know it isn't ready, we need to poll the
                    // receiver in order to register our task for notification.
                    assert!(Pin::new(&mut rx).poll(cx).is_pending());
                    (Poll::Pending, FutState::Pending(rx))
                } else {
                    mtx_data.owned = true;
                    let guard = MutexGuard {
                        mutex: self.mutex.clone(),
                    };
                    (Poll::Ready(guard), FutState::Acquired)
                }
            }
            &mut FutState::Pending(ref mut rx) => {
                match Pin::new(rx).poll(cx) {
                    Poll::Pending => return Poll::Pending,
                    Poll::Ready(_) => {
                        let state = FutState::Acquired;
                        let result = Poll::Ready(MutexGuard {
                            mutex: self.mutex.clone(),
                        });
                        (result, state)
                    } //LCOV_EXCL_LINE    kcov false negative
                }
            }
            &mut FutState::Acquired => panic!("Double-poll of ready Future"),
        };
        self.state = new_state;
        result
    }
}

#[derive(Debug, Default)]
struct MutexData {
    owned: bool,
    // FIFO queue of waiting tasks.
    waiters: VecDeque<oneshot::Sender<()>>,
}

#[derive(Debug, Default)]
struct Inner<T: ?Sized> {
    mutex: sync::Mutex<MutexData>,
    data: UnsafeCell<T>,
}

/// `MutexWeak` is a non-owning reference to a [`Mutex`].  `MutexWeak` is to
/// [`Mutex`] as [`std::sync::Weak`] is to [`std::sync::Arc`].
///
/// # Examples
/// ```
/// # use futures_locks::{Mutex,MutexGuard};
/// # fn main() {
/// let mutex = Mutex::<u32>::new(0);
/// let mutex_weak = Mutex::downgrade(&mutex);
/// let mutex_new = mutex_weak.upgrade().unwrap();
/// # }
/// ```
///
/// [`Mutex`]: struct.Mutex.html
/// [`std::sync::Weak`]: https://doc.rust-lang.org/std/sync/struct.Weak.html
/// [`std::sync::Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
#[derive(Debug)]
pub struct MutexWeak<T: ?Sized> {
    inner: sync::Weak<Inner<T>>,
}

impl<T: ?Sized> MutexWeak<T> {
    /// Tries to upgrade the `MutexWeak` to `Mutex`. If the `Mutex` was dropped
    /// then the function return `None`.
    pub fn upgrade(&self) -> Option<Mutex<T>> {
        if let Some(inner) = self.inner.upgrade() {
            return Some(Mutex { inner });
        }
        None
    }
}

impl<T: ?Sized> Clone for MutexWeak<T> {
    fn clone(&self) -> MutexWeak<T> {
        MutexWeak {
            inner: self.inner.clone(),
        }
    }
}

unsafe impl<T: ?Sized + Send> Send for MutexWeak<T> {}
unsafe impl<T: ?Sized + Send> Sync for MutexWeak<T> {}

/// A Futures-aware Mutex.
///
/// `std::sync::Mutex` cannot be used in an asynchronous environment like Tokio,
/// because a mutex acquisition can block an entire reactor.  This class can be
/// used instead.  It functions much like `std::sync::Mutex`.  Unlike that
/// class, it also has a builtin `Arc`, making it accessible from multiple
/// threads.  It's also safe to `clone`.  Also unlike `std::sync::Mutex`, this
/// class does not detect lock poisoning.
///
/// # Examples
///
/// ```
/// # use futures_locks::*;
/// # use futures::executor::block_on;
/// # use futures::{Future, FutureExt};
/// # fn main() {
/// let mtx = Mutex::<u32>::new(0);
/// let fut = mtx.lock().map(|mut guard| { *guard += 5; });
/// block_on(fut);
/// assert_eq!(mtx.try_unwrap().unwrap(), 5);
/// # }
/// ```
#[derive(Debug, Default)]
pub struct Mutex<T: ?Sized> {
    inner: sync::Arc<Inner<T>>,
}

impl<T: ?Sized> Clone for Mutex<T> {
    fn clone(&self) -> Mutex<T> {
        Mutex {
            inner: self.inner.clone(),
        }
    }
}

impl<T> Mutex<T> {
    /// Create a new `Mutex` in the unlocked state.
    pub fn new(t: T) -> Mutex<T> {
        let mutex_data = MutexData {
            owned: false,
            waiters: VecDeque::new(),
        };
        let inner = Inner {
            mutex: sync::Mutex::new(mutex_data),
            data: UnsafeCell::new(t),
        }; //LCOV_EXCL_LINE    kcov false negative
        Mutex {
            inner: sync::Arc::new(inner),
        }
    }

    /// Consumes the `Mutex` and returns the wrapped data.  If the `Mutex` still
    /// has multiple references (not necessarily locked), returns a copy of
    /// `self` instead.
    pub fn try_unwrap(self) -> Result<T, Mutex<T>> {
        match sync::Arc::try_unwrap(self.inner) {
            Ok(inner) => Ok({
                // `unsafe` is no longer needed as of somewhere around 1.25.0.
                // https://github.com/rust-lang/rust/issues/35067
                #[allow(unused_unsafe)]
                unsafe {
                    inner.data.into_inner()
                }
            }),
            Err(arc) => Err(Mutex { inner: arc }),
        }
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Create a [`MutexWeak`] reference to this `Mutex`.
    ///
    /// [`MutexWeak`]: struct.MutexWeak.html
    pub fn downgrade(this: &Mutex<T>) -> MutexWeak<T> {
        MutexWeak {
            inner: sync::Arc::<Inner<T>>::downgrade(&this.inner),
        }
    }

    /// Returns a reference to the underlying data, if there are no other
    /// clones of the `Mutex`.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking takes
    /// place -- the mutable borrow statically guarantees no locks exist.
    /// However, if the `Mutex` has already been cloned, then `None` will be
    /// returned instead.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures_locks::*;
    /// # fn main() {
    /// let mut mtx = Mutex::<u32>::new(0);
    /// *mtx.get_mut().unwrap() += 5;
    /// assert_eq!(mtx.try_unwrap().unwrap(), 5);
    /// # }
    /// ```
    pub fn get_mut(&mut self) -> Option<&mut T> {
        if let Some(inner) = sync::Arc::get_mut(&mut self.inner) {
            let lock_data = inner.mutex.get_mut().unwrap();
            let data = unsafe { inner.data.get().as_mut() }.unwrap();
            debug_assert!(!lock_data.owned);
            Some(data)
        } else {
            None
        }
    }

    /// Acquires a `Mutex`, blocking the task in the meantime.  When the
    /// returned `Future` is ready, this task will have sole access to the
    /// protected data.
    pub fn lock(&self) -> MutexFut<T> {
        MutexFut::new(FutState::New, self.clone())
    }

    /// Attempts to acquire the lock.
    ///
    /// If the operation would block, returns `Err` instead.  Otherwise, returns
    /// a guard (not a `Future`).
    ///
    /// # Examples
    /// ```
    /// # use futures_locks::*;
    /// # fn main() {
    /// let mut mtx = Mutex::<u32>::new(0);
    /// match mtx.try_lock() {
    ///     Ok(mut guard) => *guard += 5,
    ///     Err(()) => println!("Better luck next time!")
    /// };
    /// # }
    /// ```
    pub fn try_lock(&self) -> Result<MutexGuard<T>, ()> {
        let mut mtx_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
        if mtx_data.owned {
            Err(())
        } else {
            mtx_data.owned = true;
            Ok(MutexGuard {
                mutex: self.clone(),
            })
        }
    }

    /// Release the `Mutex`
    fn unlock(&self) {
        let mut mtx_data = self.inner.mutex.lock().expect("sync::Mutex::lock");
        assert!(mtx_data.owned);

        while let Some(tx) = mtx_data.waiters.pop_front() {
            if tx.send(()).is_ok() {
                return;
            }
            // An error indicates that the waiter's future was dropped
        }
        // Relinquish ownership
        mtx_data.owned = false;
    }

    /// Returns true if the two `Mutex` point to the same data else false.
    pub fn ptr_eq(this: &Mutex<T>, other: &Mutex<T>) -> bool {
        sync::Arc::ptr_eq(&this.inner, &other.inner)
    }
}

impl<T: 'static + ?Sized> Mutex<T> {
    /// Acquires a `Mutex` and performs a computation on its guarded value in a
    /// separate task.  Returns a `Future` containing the result of the
    /// computation.
    ///
    /// When using Tokio, this method will often hold the `Mutex` for less time
    /// than chaining a computation to [`lock`](#method.lock).  The reason is
    /// that Tokio polls all tasks promptly upon notification.  However, Tokio
    /// does not guarantee that it will poll all futures promptly when their
    /// owning task gets notified.  So it's best to hold `Mutex`es within their
    /// own tasks, lest their continuations get blocked by slow stacked
    /// combinators.
    #[cfg(any(feature = "tokio", all(feature = "nightly-docs", rustdoc)))]
    #[cfg_attr(feature = "nightly-docs", doc(cfg(feature = "tokio")))]
    pub fn with<B, F, R>(&self, f: F) -> impl Future<Output = R>
    where
        F: FnOnce(MutexGuard<T>) -> B + Send + 'static,
        B: Future<Output = R> + Send + 'static,
        R: Send + 'static,
        T: Send,
    {
        let (tx, rx) = oneshot::channel::<R>();
        tokio_::spawn(self.lock().then(move |data| {
            f(data).map(move |result| {
                //Swallow errors; there's nothing to do if the
                //receiver got cancelled
                let _ = tx.send(result);
            })
        }));
        //We control the sender so we're sure it won't be dropped before
        //sending so we can unwrap safely
        rx.map(Result::unwrap)
    }
}

unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

// LCOV_EXCL_START
#[cfg(test)]
mod t {
    use super::*;

    /// Pet Kcov
    #[test]
    fn debug() {
        let m = Mutex::<u32>::new(0);
        format!("{:?}", &m);
    }

    #[test]
    fn test_default() {
        let m = Mutex::default();
        let value: u32 = m.try_unwrap().unwrap();
        let expected = u32::default();

        assert_eq!(expected, value);
    }
}
// LCOV_EXCL_STOP