1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
mod graph;

use std::mem;
use std::ops::Add;
use std::hash::{ Hash, BuildHasher };
use std::vec::IntoIter;
use std::collections::hash_map::RandomState;
use futures::stream::futures_unordered::FuturesUnordered;
use futures::sync::{oneshot, BiLock};
use futures::prelude::*;
use crate::graph::Graph;
pub use crate::graph::Index;


pub struct TaskGraph<T, I=u32, S=RandomState> {
    dag: Graph<State<T>, I, S>,
    pending: Vec<IndexFuture<T, I>>
}

enum State<T> {
    Pending {
        count: usize,
        task: T
    },
    Running,
}

impl<T, I, S> Default for TaskGraph<T, I, S>
where
    I: Default + Hash + PartialEq + Eq,
    S: Default + BuildHasher
{
    fn default() -> TaskGraph<T, I, S> {
        TaskGraph { dag: Graph::default(), pending: Vec::new() }
    }
}

impl<T> TaskGraph<T> {
    pub fn new() -> Self {
        TaskGraph::default()
    }
}

impl<T, I, S> TaskGraph<T, I, S>
where
    T: Future,
    for<'a> &'a I: Add<I>,
    for<'a> <&'a I as Add<I>>::Output: Into<I>,
    I: From<u32> + Hash + PartialEq + Eq + Clone,
    S: BuildHasher
{
    pub fn add_task(&mut self, deps: &[Index<I>], task: T) -> Index<I> {
        if deps.is_empty() {
            let index = self.dag.add_node(State::Running);
            self.pending.push(IndexFuture::new(index.clone(), task));
            index
        } else {
            let index = self.dag.add_node(State::Pending { count: deps.len(), task });
            for parent in deps {
                self.dag.add_edge(parent, index.clone());
            }
            index
        }
    }

    pub fn execute(mut self) -> (AddTask<T, I, S>, Execute<T, I, S>) {
        let mut queue = FuturesUnordered::new();
        for fut in self.pending.drain(..) {
            queue.push(fut);
        }
        let (g1, g2) = BiLock::new(self);
        let (tx, rx) = oneshot::channel();
        (
            AddTask { inner: g1, tx },
            Execute { inner: g2, done: Vec::new(), is_canceled: false, queue, rx }
        )
    }

    fn walk(&mut self, index: &Index<I>) -> TaskWalker<'_, T, I, S> {
        let walker = self.dag.walk(index);
        TaskWalker { dag: &mut self.dag, walker }
    }
}

pub struct AddTask<T, I=u32, S=RandomState> {
    inner: BiLock<TaskGraph<T, I, S>>,
    tx: oneshot::Sender<()>
}

impl<T, I, S> AddTask<T, I, S>
where
    for<'a> &'a I: Add<I>,
    for<'a> <&'a I as Add<I>>::Output: Into<I>,
    I: From<u32> + Hash + PartialEq + Eq + Clone,
    S: BuildHasher
{
    pub fn add_task(&self, deps: &[Index<I>], task: T) -> Async<Index<I>> {
        let mut graph = match self.inner.poll_lock() {
            Async::Ready(graph) => graph,
            Async::NotReady => return Async::NotReady
        };

        let count = deps.iter()
            .filter(|&i| graph.dag.contains(i))
            .count();
        if count == 0 {
            let index = graph.dag.add_node(State::Running);
            graph.pending.push(IndexFuture::new(index.clone(), task));
            Async::Ready(index)
        } else {
            let index = graph.dag.add_node(State::Pending { count, task });
            for parent in deps {
                graph.dag.add_edge(parent, index.clone());
            }
            Async::Ready(index)
        }
    }

    pub fn abort(self) {
        let _ = self.tx.send(());
    }
}

pub struct Execute<T, I=u32, S=RandomState> {
    inner: BiLock<TaskGraph<T, I, S>>,
    queue: FuturesUnordered<IndexFuture<T, I>>,
    done: Vec<Index<I>>,
    rx: oneshot::Receiver<()>,
    is_canceled: bool
}

impl<T, I, S> Execute<T, I, S>
where
    T: Future,
    for<'a> &'a I: Add<I>,
    for<'a> <&'a I as Add<I>>::Output: Into<I>,
    I: From<u32> + Hash + PartialEq + Eq + Clone,
    S: BuildHasher
{
    fn enqueue(&mut self) -> Async<()> {
        let mut graph = match self.inner.poll_lock() {
            Async::Ready(graph) => graph,
            Async::NotReady => return Async::NotReady
        };

        for fut in graph.pending.drain(..) {
            self.queue.push(fut);
        }

        for index in self.done.drain(..) {
            for fut in graph.walk(&index) {
                self.queue.push(fut);
            }
            graph.dag.remove_node(&index);
        }

        Async::Ready(())
    }
}

impl<F, I, S> Stream for Execute<F, I, S>
where
    F: Future,
    for<'i> &'i I: Add<I>,
    for<'i> <&'i I as Add<I>>::Output: Into<I>,
    I: From<u32> + Hash + PartialEq + Eq + Clone,
    S: BuildHasher
{
    type Item = (Index<I>, F::Item);
    type Error = F::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        match self.rx.poll() {
            Ok(Async::NotReady) => (),
            Ok(Async::Ready(())) => return Ok(Async::Ready(None)),
            Err(_) => {
                self.is_canceled = true;
            }
        }

        match self.enqueue() {
            Async::Ready(()) => (),
            Async::NotReady => return Ok(Async::NotReady)
        }

        match self.queue.poll() {
            Ok(Async::Ready(Some((i, item)))) => {
                self.done.push(i.clone());
                Ok(Async::Ready(Some((i, item))))
            },
            Ok(Async::Ready(None)) if self.is_canceled => Ok(Async::Ready(None)),
            Ok(Async::Ready(None)) | Ok(Async::NotReady) => Ok(Async::NotReady),
            Err(err) => Err(err)
        }
    }
}

struct IndexFuture<F, I> {
    index: Index<I>,
    fut: F
}

impl<F, I> IndexFuture<F, I> {
    pub fn new(index: Index<I>, fut: F) -> IndexFuture<F, I> {
        IndexFuture { index, fut }
    }
}

impl<F: Future, I: Clone> Future for IndexFuture<F, I> {
    type Item = (Index<I>, F::Item);
    type Error = F::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        match self.fut.poll() {
            Ok(Async::Ready(item)) => Ok(Async::Ready((self.index.clone(), item))),
            Ok(Async::NotReady) => Ok(Async::NotReady),
            Err(err) => Err(err)
        }
    }
}

struct TaskWalker<'a, T, I, S> {
    dag: &'a mut Graph<State<T>, I, S>,
    walker: IntoIter<Index<I>>
}

impl<'a, T, I, S> Iterator for TaskWalker<'a, T, I, S>
where
    for<'i> &'i I: Add<I>,
    for<'i> <&'i I as Add<I>>::Output: Into<I>,
    I: From<u32> + Hash + PartialEq + Eq + Clone,
    S: BuildHasher
{
    type Item = IndexFuture<T, I>;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(index) = self.walker.next() {
            let state = match self.dag.get_node_mut(&index) {
                Some(node) => node,
                None => continue
            };

            if let State::Pending { count, .. } = state {
                *count -= 1;
            }

            match state {
                State::Pending { count, .. } if *count == 0 => (),
                _ => continue
            }

            if let State::Pending { task, .. } = mem::replace(state, State::Running) {
                return Some(IndexFuture::new(index, task));
            }
        }

        None
    }
}