1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use std::collections::VecDeque;
use std::sync::Mutex;

use futures::{Async, Future, Poll};
use futures::task::{self, Task};

/// The `ReturnSlot` through which the object can be returned to its
/// `OrderedCheckout` once the consumer is done with it. If a consumer
/// fails to return the object, no other consumer can ever proceed.
#[derive(Debug)]
pub struct ReturnSlot<'checkout, T>
    where T: 'checkout
{
    checkout: &'checkout OrderedCheckout<T>,
}

impl<'checkout, T> ReturnSlot<'checkout, T>
    where T: 'checkout
{
    /// Return the checked out item, consuming this `ReturnSlot`.
    pub fn return_(self, item: T) {
        let mut inner = self.checkout.inner.lock().unwrap();
        assert!(inner.data.is_none());
        inner.data = Some(item);
        if let Some(next) = inner.queue.pop_front() {
            next.notify();
        }
    }
}

/// The future that can be polled to receive the object.
/// To be hidden behind `impl Trait` once its stable.
#[derive(Debug)]
pub struct OrderedCheckoutFuture<'checkout, T>
    where T: 'checkout
{
    checkout: &'checkout OrderedCheckout<T>,
}

impl<'checkout, T> Future for OrderedCheckoutFuture<'checkout, T>
    where T: 'checkout
{
    type Item = (ReturnSlot<'checkout, T>, T);
    type Error = ();

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let mut inner = self.checkout.inner.lock().unwrap();
        if let Some(data) = inner.data.take() {
            let slot = ReturnSlot {
                checkout: self.checkout
            };
            return Ok(Async::Ready((slot, data)));
        }

        inner.queue.push_back(task::current());
        Ok(Async::NotReady)
    }
}

#[derive(Debug)]
struct OrderedCheckoutInner<T> {
    data: Option<T>,
    queue: VecDeque<Task>,
}

/// The `OrderedCheckout` object allows multiple consumers to check out and
/// return an object, queueing consumers when the object is not available and
/// waking them in order when it becomes available.
#[derive(Debug)]
pub struct OrderedCheckout<T> {
    inner: Mutex<OrderedCheckoutInner<T>>,
}

impl<T> OrderedCheckout<T> {
    /// Construct a new `OrderedCheckout` with the provided underlying object.
    pub fn new(item: T) -> OrderedCheckout<T> {
        OrderedCheckout {
            inner: Mutex::new(OrderedCheckoutInner {
                data: Some(item),
                queue: VecDeque::new(),
            })
        }
    }

    /// Begin the process of checking out an object. For efficiency, the future
    /// does not join the queue until it is polled. This can affect the order
    /// in which the object is received.
    pub fn checkout<'me>(&'me self) -> OrderedCheckoutFuture<'me, T> {
        OrderedCheckoutFuture {
            checkout: self,
        }
    }

    /// Consume this `OrderedCheckout` and return its underlying object, if any.
    /// Since this consumes the `OrderedCheckout` it is guaranteed that there are
    /// no outstanding waiters. Because a consumer can fail to return the object
    /// this may return None.
    pub fn into_inner(self) -> Option<T> {
        self.inner.into_inner().unwrap().data
    }
}

#[test]
fn test_checkout_return() {
    use std::cell::RefCell;

    let data: u32 = 42;
    let library = OrderedCheckout::new(data);

    let f2_seen_data = RefCell::new(false);
    {
        let f2_seen_data_ref = &f2_seen_data;
        let f1 = library.checkout()
            .map(|(ret, data)| {
                assert_eq!(*f2_seen_data_ref.borrow(), false);
                assert_eq!(data, 42);
                (ret, 13)
            })
            .map(|(ret, data)| ret.return_(data));
        let f2 = library.checkout()
            .map(|(ret, data)| {
                assert_eq!(*f2_seen_data_ref.borrow(), false);
                assert_eq!(data, 13);
                *f2_seen_data_ref.borrow_mut() = true;
                ret.return_(0)
            });
        f1.wait().unwrap();
        f2.wait().unwrap();
    }

    assert_eq!(f2_seen_data.into_inner(), true);
    assert_eq!(library.into_inner(), Some(0));
}

#[test]
fn test_checkout_return_queued() {
    use std::cell::RefCell;

    use futures::future::ok;
    use futures::sync::oneshot::channel;

    let data: u32 = 42;
    let library = OrderedCheckout::new(data);
    let (tx1, rx1) = channel();
    let (tx2, mut rx2) = channel();
    let f2_seen_data = RefCell::new(false);
    ok::<_, ()>(()).and_then(|_| {
        let f1_seen_data = RefCell::new(false);
        let f1_seen_data_ref = &f1_seen_data;
        let f2_seen_data_ref = &f2_seen_data;
        let mut f1 = library.checkout()
            .map(|(ret, data)| {
                *f1_seen_data_ref.borrow_mut() = true;
                (ret, data)
            })
            .join(rx1.map_err(|_| ()))
            .map(|((ret, data), _)| {
                assert_eq!(*f2_seen_data_ref.borrow(), false);
                assert_eq!(data, 42);
                (ret, 13)
            })
            .map(|(ret, data)| ret.return_(data));
        let mut f2 = library.checkout()
            .map(|(ret, data)| {
                assert_eq!(*f2_seen_data_ref.borrow(), false);
                assert_eq!(data, 13);
                *f2_seen_data_ref.borrow_mut() = true;
                ret.return_(0);
                tx2.send(()).unwrap()
            });
        assert_eq!(f1.poll(), Ok(Async::NotReady));
        assert_eq!(*f1_seen_data_ref.borrow(), true);
        assert_eq!(f2.poll(), Ok(Async::NotReady));
        tx1.send(()).unwrap();
        assert_eq!(f2.poll(), Ok(Async::NotReady));
        f1.wait().unwrap();
        assert_eq!(rx2.poll(), Ok(Async::NotReady));
        f2.wait().unwrap();
        rx2.wait().unwrap();
        Ok(())
    }).wait().unwrap();

    assert_eq!(f2_seen_data.into_inner(), true);
    assert_eq!(library.into_inner(), Some(0));
}