1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! This module defines a cheaply-copyable cursor into a TokenStream's data.
//!
//! It does this by copying the data into a stably-addressed structured buffer,
//! and holding raw pointers into that buffer to allow walking through delimited
//! sequences cheaply.
//!
//! This module is heavily commented as it contains the only unsafe code in
//! `syn`, and caution should be made when editing it. It provides a safe
//! interface, but is fragile internally.

use proc_macro2::*;

use std::ptr;
use std::fmt;
use std::marker::PhantomData;

/// Internal type which is used instead of `TokenTree` to represent a single
/// `TokenTree` within a `SynomBuffer`.
#[derive(Debug)]
enum Entry {
    /// Mimicing types from proc-macro.
    Group(Span, Delimiter, SynomBuffer),
    Term(Span, Term),
    Op(Span, char, Spacing),
    Literal(Span, Literal),
    /// End entries contain a raw pointer to the entry from the containing
    /// TokenTree.
    End(*const Entry),
}

/// A buffer of data which contains a structured representation of the input
/// `TokenStream` object.
#[derive(Debug)]
pub struct SynomBuffer {
    // NOTE: Do not derive clone on this - there are raw pointers inside which
    // will be messed up. Moving the `SynomBuffer` itself is safe as the actual
    // backing slices won't be moved.
    data: Box<[Entry]>,
}

impl SynomBuffer {
    // NOTE: DO NOT MUTATE THE `Vec` RETURNED FROM THIS FUNCTION ONCE IT
    // RETURNS, THE ADDRESS OF ITS BACKING MEMORY MUST REMAIN STABLE.
    fn inner_new(stream: TokenStream, up: *const Entry) -> SynomBuffer {
        // Build up the entries list, recording the locations of any Groups
        // in the list to be processed later.
        let mut entries = Vec::new();
        let mut seqs = Vec::new();
        for tt in stream.into_iter() {
            match tt.kind {
                TokenNode::Term(sym) => {
                    entries.push(Entry::Term(tt.span, sym));
                }
                TokenNode::Op(chr, ok) => {
                    entries.push(Entry::Op(tt.span, chr, ok));
                }
                TokenNode::Literal(lit) => {
                    entries.push(Entry::Literal(tt.span, lit));
                }
                TokenNode::Group(delim, seq_stream) => {
                    // Record the index of the interesting entry, and store an
                    // `End(null)` there temporarially.
                    seqs.push((entries.len(), tt.span, delim, seq_stream));
                    entries.push(Entry::End(ptr::null()));
                }
            }
        }
        // Add an `End` entry to the end with a reference to the enclosing token
        // stream which was passed in.
        entries.push(Entry::End(up));

        // NOTE: This is done to ensure that we don't accidentally modify the
        // length of the backing buffer. The backing buffer must remain at a
        // constant address after this point, as we are going to store a raw
        // pointer into it.
        let mut entries = entries.into_boxed_slice();
        for (idx, span, delim, seq_stream) in seqs {
            // We know that this index refers to one of the temporary
            // `End(null)` entries, and we know that the last entry is
            // `End(up)`, so the next index is also valid.
            let seq_up = &entries[idx + 1] as *const Entry;

            // The end entry stored at the end of this Entry::Group should
            // point to the Entry which follows the Group in the list.
            let inner = Self::inner_new(seq_stream, seq_up);
            entries[idx] = Entry::Group(span, delim, inner);
        }

        SynomBuffer {
            data: entries
        }
    }

    /// Create a new SynomBuffer, which contains the data from the given
    /// TokenStream.
    pub fn new(stream: TokenStream) -> SynomBuffer {
        Self::inner_new(stream, ptr::null())
    }

    /// Create a cursor referencing the first token in the input.
    pub fn begin(&self) -> Cursor {
        unsafe {
            Cursor::create(&self.data[0], &self.data[self.data.len() - 1])
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct SeqInfo<'a> {
    pub span: Span,
    pub inside: Cursor<'a>,
    pub outside: Cursor<'a>,
}

/// A cursor into an input `TokenStream`'s data. This cursor holds a reference
/// into the immutable data which is used internally to represent a
/// `TokenStream`, and can be efficiently manipulated and copied around.
///
/// An empty `Cursor` can be created directly, or one may create a `SynomBuffer`
/// object and get a cursor to its first token with `begin()`.
///
/// Two cursors are equal if they have the same location in the same input
/// stream, and have the same scope.
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Cursor<'a> {
    /// The current entry which the `Cursor` is pointing at.
    ptr: *const Entry,
    /// This is the only `Entry::End(..)` object which this cursor is allowed to
    /// point at. All other `End` objects are skipped over in `Cursor::create`.
    scope: *const Entry,
    /// This uses the &'a reference which guarantees that these pointers are
    /// still valid.
    marker: PhantomData<&'a Entry>,
}

impl<'a> Cursor<'a> {
    /// Create a cursor referencing a static empty TokenStream.
    pub fn empty() -> Self {
        // It's safe in this situation for us to put an `Entry` object in global
        // storage, despite it not actually being safe to send across threads
        // (`Term` is a reference into a thread-local table). This is because
        // this entry never includes a `Term` object.
        //
        // This wrapper struct allows us to break the rules and put a `Sync`
        // object in global storage.
        struct UnsafeSyncEntry(Entry);
        unsafe impl Sync for UnsafeSyncEntry {}
        static EMPTY_ENTRY: UnsafeSyncEntry =
            UnsafeSyncEntry(Entry::End(0 as *const Entry));

        Cursor {
            ptr: &EMPTY_ENTRY.0,
            scope: &EMPTY_ENTRY.0,
            marker: PhantomData,
        }
    }

    /// This create method intelligently exits non-explicitly-entered
    /// `None`-delimited scopes when the cursor reaches the end of them,
    /// allowing for them to be treated transparently.
    unsafe fn create(mut ptr: *const Entry, scope: *const Entry) -> Self {
        // NOTE: If we're looking at a `End(..)`, we want to advance the cursor
        // past it, unless `ptr == scope`, which means that we're at the edge of
        // our cursor's scope. We should only have `ptr != scope` at the exit
        // from None-delimited sequences entered with `ignore_none`.
        while let Entry::End(exit) = *ptr {
            if ptr == scope {
                break;
            }
            ptr = exit;
        }

        Cursor {
            ptr: ptr,
            scope: scope,
            marker: PhantomData,
        }
    }

    /// Get the current entry.
    fn entry(self) -> &'a Entry {
        unsafe { &*self.ptr }
    }

    /// Bump the cursor to point at the next token after the current one. This
    /// is undefined behavior if the cursor is currently looking at an
    /// `Entry::End`.
    unsafe fn bump(self) -> Cursor<'a> {
        Cursor::create(self.ptr.offset(1), self.scope)
    }

    /// If the cursor is looking at a `None`-delimited sequence, move it to look
    /// at the first token inside instead. If the sequence is empty, this will
    /// move the cursor past the `None`-delimited sequence.
    ///
    /// WARNING: This mutates its argument.
    fn ignore_none(&mut self) {
        if let Entry::Group(_, Delimiter::None, ref buf) = *self.entry() {
            // NOTE: We call `Cursor::create` here to make sure that situations
            // where we should immediately exit the span after entering it are
            // handled correctly.
            unsafe {
                *self = Cursor::create(&buf.data[0], self.scope);
            }
        }
    }

    /// Check if the cursor is currently pointing at the end of its valid scope.
    #[inline]
    pub fn eof(self) -> bool {
        // We're at eof if we're at the end of our scope.
        self.ptr == self.scope
    }

    /// If the cursor is pointing at a Seq with the given `Delimiter`, return a
    /// cursor into that sequence, and one pointing to the next `TokenTree`.
    pub fn seq(mut self, seq_delim: Delimiter) -> Option<SeqInfo<'a>> {
        // If we're not trying to enter a none-delimited sequence, we want to
        // ignore them. We have to make sure to _not_ ignore them when we want
        // to enter them, of course. For obvious reasons.
        if seq_delim != Delimiter::None {
            self.ignore_none();
        }

        match *self.entry() {
            Entry::Group(span, delim, ref buf) => {
                if delim != seq_delim {
                    return None;
                }

                Some(SeqInfo {
                    span: span,
                    inside: buf.begin(),
                    outside: unsafe { self.bump() },
                })
            }
            _ => None
        }
    }

    /// If the cursor is pointing at a Term, return it and a cursor pointing at
    /// the next `TokenTree`.
    pub fn word(mut self) -> Option<(Cursor<'a>, Span, Term)> {
        self.ignore_none();
        match *self.entry() {
            Entry::Term(span, sym) => {
                Some((
                    unsafe { self.bump() },
                    span,
                    sym,
                ))
            }
            _ => None
        }
    }

    /// If the cursor is pointing at an Op, return it and a cursor pointing
    /// at the next `TokenTree`.
    pub fn op(mut self) -> Option<(Cursor<'a>, Span, char, Spacing)> {
        self.ignore_none();
        match *self.entry() {
            Entry::Op(span, chr, kind) => {
                Some((
                    unsafe { self.bump() },
                    span,
                    chr,
                    kind,
                ))
            }
            _ => None
        }
    }

    /// If the cursor is pointing at a Literal, return it and a cursor pointing
    /// at the next `TokenTree`.
    pub fn literal(mut self) -> Option<(Cursor<'a>, Span, Literal)> {
        self.ignore_none();
        match *self.entry() {
            Entry::Literal(span, ref lit) => {
                Some((
                    unsafe { self.bump() },
                    span,
                    lit.clone(),
                ))
            }
            _ => None
        }
    }

    /// Copy all remaining tokens visible from this cursor into a `TokenStream`.
    pub fn token_stream(self) -> TokenStream {
        let mut tts = Vec::new();
        let mut cursor = self;
        while let Some((next, tt)) = cursor.token_tree() {
            tts.push(tt);
            cursor = next;
        }
        tts.into_iter().collect()
    }

    /// If the cursor is looking at a `TokenTree`, returns it along with a
    /// cursor pointing to the next token in the sequence, otherwise returns
    /// `None`.
    ///
    /// This method does not treat `None`-delimited sequences as invisible, and
    /// will return a `Group(None, ..)` if the cursor is looking at one.
    pub fn token_tree(self) -> Option<(Cursor<'a>, TokenTree)> {
        let tree = match *self.entry() {
            Entry::Group(span, delim, ref buf) => {
                let stream = buf.begin().token_stream();
                TokenTree {
                    span: span,
                    kind: TokenNode::Group(delim, stream),
                }
            }
            Entry::Literal(span, ref lit) => {
                TokenTree {
                    span: span,
                    kind: TokenNode::Literal(lit.clone()),
                }
            }
            Entry::Term(span, sym) => {
                TokenTree {
                    span: span,
                    kind: TokenNode::Term(sym),
                }
            }
            Entry::Op(span, chr, kind) => {
                TokenTree {
                    span: span,
                    kind: TokenNode::Op(chr, kind),
                }
            }
            Entry::End(..) => {
                return None;
            }
        };

        Some((
            unsafe { self.bump() },
            tree
        ))
    }
}

// We do a custom implementation for `Debug` as the default implementation is
// pretty useless.
impl<'a> fmt::Debug for Cursor<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Cursor")
            .field("ptr", &self.ptr)
            .field("scope", &self.scope)
            // Dummy `entry` field to show data behind the `ptr` ptr.
            .field("entry", self.entry())
            .finish()
    }
}