1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//!
//! Fuss - Small, lightweight simplex noise generator for Rust
//! 
//! Ported from http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
//! originally in Java.
//! 

#![crate_type = "lib"]
#![crate_name = "fuss"]

mod test;

extern crate rand;
use rand::{thread_rng, SeedableRng, Rng, StdRng};

// Constants

// Skew 2D
const F2 : f32 = 0.366025403;
// Unskew 2D
const G2 : f32 = 0.211324865;

// Skew 3D
const F3 : f32 = 1.0/3.0;
// Unskew 3D
const G3 : f32 = 1.0/6.0;

// "For the noise function to be repeatable, i.e. always yield the same value f
// or a given input point, gradients need to be pseudo-random, not truly random. 
// They need to have enough variation to conceal the fact that the function is not 
// truly random, but too much variation will cause unpre- dictable behaviour for 
// the  noise function. A good choice for 2D and higher is to pick gradients of unit 
// length but different directions. For 2D, 8 or 16 gradients distributed around 
// the unit circle is a good choice. For 3D, Ken Perlin’s recommended set of gradients is 
// the midpoints of each of the 12 edges of a cube centered on the origin."
const GRAD3: [(i8, i8, i8); 12] = [
  (1, 1, 0), (-1, 1, 0), (1, -1, 0), (-1, -1, 0),  
  (1, 0, 1), (-1, 0, 1), (1, 0, -1), (-1, 0, -1),  
  (0, 1, 1), (0, -1, 1), (0, 1, -1), (0, -1, -1),
];

// Vector math

///
/// Find dot product of a vector in 2 dimensions
///
#[inline]
fn dot2(g: (i8, i8, i8), x: f32, y: f32) -> f32 {
  g.0 as f32 * x + g.1 as f32 * y
}

///
/// Find dot product of a vector in 3 dimensions
/// 
#[inline]
fn dot3(g: (i8, i8, i8), x: f32, y: f32, z: f32) -> f32 {
  g.0 as f32 * x + g.1 as f32 * y + g.2 as f32 * z
}

///
/// Hold the proper permutation tables and methods for generating 2D and 3D noise.
/// 
/// It is intended for you to get a `Simplex` through `Simplex::new()` since that
/// creates the necessary permutation tables needed to generate noise.
/// 
/// Noise generated by `Simplex` is random every time.
/// 
/// * `seed` - Seed that will be used by `Simplex` to generate it's permutation table
/// 
pub struct Simplex {

  pub seed: Vec<usize>,

  perm: Vec<u8>,

}

impl Simplex {

  ///
  /// Return a new `Simplex` with a new random permutation table
  /// 
  /// Necessary to generate the proper permutation tables (GRAD3)
  /// used by `noise_2d()` and `noise_3d`.
  /// 
  /// # Examples
  /// 
  /// ```
  /// use fuss::Simplex;
  /// 
  /// let sn = Simplex::new();
  /// ```
  /// 
  pub fn new() -> Simplex {

    let seed = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
    return Simplex::from_seed(seed);

  }

  ///
  /// Seed the random number generator with a specific 
  /// seed
  /// 
  /// A seed is just a vector of usizes that will be passed into
  /// `StdRng::from_seed` as a slice.
  /// 
  /// # Examples
  /// 
  /// ```
  /// use fuss::Simplex;
  /// 
  /// let mut sn = Simplex::from_seed(vec![1, 2, 3]);
  /// let mut other_sn = Simplex::from_seed(vec![1, 2, 3]);
  /// 
  /// assert_eq!(other_sn.noise_2d(1.0, 14.2), sn.noise_2d(1.0, 14.2));
  /// assert_eq!(other_sn.noise_3d(1.0, 14.2, -5.4), sn.noise_3d(1.0, 14.2, -5.4));
  /// 
  /// sn = Simplex::from_seed(vec![4, 5, 6]);
  /// let mut other_sn = Simplex::from_seed(vec![1, 2, 3]);
  /// assert!(other_sn.noise_2d(1.0, 14.2) != sn.noise_2d(1.0, 14.2));
  /// assert!(other_sn.noise_3d(1.0, 14.2, -5.4) != sn.noise_3d(1.0, 14.2, -5.4));
  /// ```
  /// 
  pub fn from_seed(seed: Vec<usize>) -> Simplex {
    let mut sn = Simplex { 
      seed: seed,
      perm: Vec::new() // Gets overwritten
    };
    sn.generate_perms();
    return sn;
  }

  ///
  /// Generate the permutation table
  /// 
  /// This method will overwrite the `Simplex`'s current `perm` vector
  /// with another random permutation table used by `noise_2d()` and
  /// `noise_3d`
  /// 
  fn generate_perms(&mut self) {
    let p : Vec<u8> = StdRng::from_seed(&self.seed).gen_iter().take(256).collect::<Vec<u8>>();
    self.perm = Vec::<u8>::new();
    for i in 0..512 {
      self.perm.push(p[(i & 255) as usize]);
    }
  }

  ///
  /// Smooth the output from `noise_2d` based on fractal Brownian motion.
  /// 
  /// Returns an f32 in [-1, 1]
  /// 
  /// # Examples
  /// 
  /// ```
  /// use fuss::Simplex;
  /// 
  /// let sn = Simplex::new();
  /// 
  /// let mut luminance = Vec::<Vec<f32>>::new();
  /// for x in 0..100 {
  ///   luminance.push(Vec::<f32>::new());
  ///   for y in 0..100 {
  ///     luminance[x as usize].push(sn.sum_octave_2d(16, x as f32, y as f32, 0.5, 0.008));
  ///   }
  /// }
  /// ```
  ///  
  pub fn sum_octave_2d(&self, num_iterations: isize, xin: f32, yin: f32, persistence : f32, scale : f32) -> f32 {

    let mut max_amp = 0.0;
    let mut amp = 1.0;
    let mut freq = scale;
    let mut noise = 0.0;

    // Add successively smaller, higher-frequency terms
    for _ in 0..num_iterations {
      noise += self.noise_2d(xin * freq, yin * freq) * amp;
      max_amp += amp;
      amp *= persistence;
      freq *= 2.0;
    }

    // Take the average value of the iterations
    return noise / max_amp;

  }

  ///
  /// Smooth the output from `noise_3d` based on fractal Brownian motion.
  /// 
  /// Returns an f32 in [-1, 1]
  /// 
  /// # Examples
  /// 
  /// ```
  /// use fuss::Simplex;
  /// 
  /// let sn = Simplex::new();
  /// 
  /// let mut luminance = Vec::<Vec<Vec<f32>>>::new();
  /// for x in 0..10 {
  ///   luminance.push(Vec::<Vec<f32>>::new());
  ///   for y in 0..10 {
  ///     luminance[x as usize].push(Vec::<f32>::new());
  ///     for z in 0..10 {
  ///       luminance[x as usize][y as usize].push(sn.sum_octave_3d(16, x as f32, y as f32, z as f32, 0.5, 0.008));
  ///     }
  ///   }
  /// }
  /// ```
  ///  
  pub fn sum_octave_3d(&self, num_iterations: isize, xin: f32, yin: f32, zin: f32, persistence : f32, scale : f32) -> f32 {

    let mut max_amp = 0.0;
    let mut amp = 1.0;
    let mut freq = scale;
    let mut noise = 0.0;

    // Add successively smaller, higher-frequency terms
    for _ in 0..num_iterations {
      noise += self.noise_3d(xin * freq, yin * freq, zin * freq) * amp;
      max_amp += amp;
      amp *= persistence;
      freq *= 2.0;
    }

    // Take the average value of the iterations
    return noise / max_amp;

  }
    
  ///
  /// Generate 2D simplex noise for a specific point
  /// 
  /// Returns an f32 in [-1, 1].
  /// 
  /// # Examples
  /// 
  /// ```
  /// use fuss::Simplex;
  /// 
  /// let sn = Simplex::from_seed(vec![5, 3, 2, 1, 1]);
  /// println!("{}", sn.noise_2d(50.1912, 30.50102));
  /// 
  /// // Simplex will return the same thing for the same points
  /// assert_eq!(sn.noise_2d(1.5, -0.5), sn.noise_2d(1.5, -0.5));
  /// 
  /// let other_sn = Simplex::from_seed(vec![0, 1, 2, 3, 4, 5]);
  /// 
  /// // However each `Simplex` has it's own set of permutations, therefore
  /// // each one is different. If you want consistency, try the `from_seed()` method.
  /// assert!(sn.noise_2d(1.5, -0.5) != other_sn.noise_2d(1.5, -0.5));
  /// ```
  ///
  pub fn noise_2d(&self, xin: f32, yin: f32) -> f32 {

    // Noise contributions from the three corners 
    let n0 : f32;
    let n1 : f32;
    let n2 : f32;

    // Hairy factor for 2D 
    let s = (xin + yin) * F2;
    let i = (xin + s).floor() as isize;
    let j = (yin + s).floor() as isize;

    let t = (i + j) as f32 * G2;

    // Unskew the cell origin back to (x,y) space 
    // and get he x,y distances from the cell origin 
    let x0 = xin - (i as f32 - t); 
    let y0 = yin - (j as f32 - t); 

    // For the 2D case, the simplex shape is an equilateral triangle. 
    // Determine which simplex we are in. 

    // Offsets for second (middle) corner of simplex in (i,j) coords 
    let i1 : isize;
    let j1 : isize; 

    // lower triangle, XY order: (0,0)->(1,0)->(1,1) 
    if x0 > y0 {
      i1 = 1;
      j1 = 0;
    }
    // upper triangle, YX order: (0,0)->(0,1)->(1,1) 
    else {
      i1 = 0; 
      j1 = 1;
    }

    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and 
    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where 
    // c = (3-sqrt(3))/6 

    // Offsets for middle corner in (x,y) unskewed coords 
    let x1 = x0 - i1 as f32 + G2; 
    let y1 = y0 - j1 as f32 + G2; 

    // Offsets for last corner in (x,y) unskewed coords 
    let x2 = x0 - 1.0 + 2.0 * G2; 
    let y2 = y0 - 1.0 + 2.0 * G2; 

    // Work out the hashed gradient indices of the three simplex corners 
    let ii = i & 255; 
    let jj = j & 255; 
    let gi0 = self.perm[(ii +    self.perm[jj as usize] as isize) as usize ] % 12; 
    let gi1 = self.perm[(ii + i1 + self.perm[(jj + j1) as usize] as isize) as usize ] % 12; 
    let gi2 = self.perm[(ii + 1 + self.perm[ (jj + 1) as usize] as isize) as usize] % 12; 
    
    let mut t0 = 0.5 - x0*x0-y0*y0; 
    if t0 < 0.0 {
      n0 = 0.0;
    } else { 
      t0 *= t0; 
      n0 = t0 * t0 * dot2(GRAD3[gi0 as usize], x0, y0);
    } 

    let mut t1 = 0.5 - x1*x1-y1*y1; 
    if t1 < 0. { 
      n1 = 0.0;
    } else { 
      t1 *= t1; 
      n1 = t1 * t1 * dot2(GRAD3[gi1 as usize], x1, y1); 
    }

    let mut t2 = 0.5 - x2*x2-y2*y2; 
    if t2 < 0.0 { 
      n2 = 0.0; 
    }
    else { 
      t2 *= t2; 
      n2 = t2 * t2 * dot2(GRAD3[gi2 as usize], x2, y2); 
    } 

    // Add contributions from each corner to get the final noise value. 
    // The result is scaled to return values in the interval [-1,1]. 
    return 70.0 * (n0 + n1 + n2);

  }

  ///
  /// Generate 3D simplex noise for a specific point
  /// 
  /// Returns an f32 in [-1, 1]. 
  /// 
  /// # Examples
  /// 
  /// ```
  /// use fuss::Simplex;
  /// 
  /// let sn = Simplex::new();
  /// println!("{}", sn.noise_2d(50.1912, 30.50102));
  /// 
  /// // Simplex will return the same thing for the same points
  /// assert_eq!(sn.noise_3d(1.5, -0.5, 2.1), sn.noise_3d(1.5, -0.5, 2.1));
  /// 
  /// let other_sn = Simplex::new();
  /// 
  /// // However each `Simplex` has it's own set of permutations, therefore
  /// // each one is different. If you want consistency, try the `from_seed()` method.
  /// assert!(sn.noise_3d(1.5, -0.5, 2.1) != other_sn.noise_3d(1.5, -0.5, 2.1));
  /// ```
  /// 
  pub fn noise_3d(&self, xin: f32, yin: f32, zin: f32) -> f32 {

    // Noise contributions from the four corners 
    let n0 : f32;
    let n1 : f32;
    let n2 : f32;
    let n3 : f32;

    // Very nice and simple skew factor for 3D 
    let s = (xin + yin + zin) * F3; 
    let i = (xin + s).floor(); 
    let j = (yin + s).floor(); 
    let k = (zin + s).floor(); 

    // Unskew the cell origin back to (x,y,z) space
    let t = (i + j + k) * G3; 

    // The x,y,z distances from the cell origin
    let x0 = xin - (i - t);  
    let y0 = yin - (j - t); 
    let z0 = zin - (k - t); 

    // For the 3D case, the simplex shape is a slightly 
    // irregular tetrahedron. 

    // Determine which simplex we are in. 

    // Offsets for second corner of simplex in (i,j,k) coords 
    let i1 : isize;
    let j1 : isize;
    let k1 : isize; 

    // Offsets for third corner of simplex in (i,j,k) coords 
    let i2 : isize;
    let j2 : isize;
    let k2 : isize;

    if x0 >= y0 { 
      if y0 >= z0 { 
        // X Y Z order 
        i1 = 1; 
        j1 = 0; 
        k1 = 0; 
        i2 = 1; 
        j2 = 1; 
        k2 = 0; 
      } else if x0 >= z0 { 
        // X Z Y order 
        i1=1; 
        j1=0; 
        k1=0; 
        i2=1; 
        j2=0; 
        k2=1; 
      } else { 
        // Z X Y order 
        i1=0; 
        j1=0; 
        k1=1; 
        i2=1; 
        j2=0; 
        k2=1; 
      } 
    } 
    // x0 < y0 
    else { 
      if y0 < z0 {
        // Z Y X order 
        i1=0; 
        j1=0; 
        k1=1; 
        i2=0; 
        j2=1; 
        k2=1; 
      } else if x0 < z0 { 
        // Y Z X order 
        i1=0; 
        j1=1; 
        k1=0; 
        i2=0; 
        j2=1; 
        k2=1; 
      } else { 
        // Y X Z order 
        i1=0; 
        j1=1; 
        k1=0; 
        i2=1; 
        j2=1; 
        k2=0;
      } 
    } 

    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), 
    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and 
    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where 
    // c = 1/6.

    // Offsets for second corner in (x,y,z) coords
    let x1 = x0 - i1 as f32 + G3;  
    let y1 = y0 - j1 as f32 + G3; 
    let z1 = z0 - k1 as f32 + G3; 

    // Offsets for third corner in (x,y,z) coords 
    let x2 = x0 - i2 as f32 + 2.0*G3; 
    let y2 = y0 - j2 as f32 + 2.0*G3; 
    let z2 = z0 - k2 as f32 + 2.0*G3; 

    // Offsets for last corner in (x,y,z) coords 
    let x3 = x0 - 1.0 + 3.0*G3;
    let y3 = y0 - 1.0 + 3.0*G3; 
    let z3 = z0 - 1.0 + 3.0*G3; 

    // Work out the hashed gradient indices of the four simplex corners 
    let ii = i as isize & 255; 
    let jj = j as isize & 255; 
    let kk = k as isize & 255; 

    let gi0 = self.perm[(ii + self.perm[(jj + self.perm[kk as usize] as isize) as usize] as isize) as usize] % 12; 
    let gi1 = self.perm[(ii + i1 + self.perm[(jj + j1 + self.perm[(kk + k1) as usize] as isize) as usize] as isize) as usize] % 12; 
    let gi2 = self.perm[(ii + i2 + self.perm[(jj + j2 + self.perm[(kk + k2) as usize] as isize) as usize] as isize) as usize] % 12; 
    let gi3 = self.perm[(ii + 1 + self.perm [(jj + 1 + self.perm[kk as usize + 1] as isize) as usize] as isize) as usize] % 12; 
    
    // Calculate the contribution from the four corners 
    let mut t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; 
    if t0 < 0.0 { 
      n0 = 0.0; 
    }
    else { 
      t0 *= t0; 
      n0 = t0 * t0 * dot3(GRAD3[gi0 as usize], x0, y0, z0); 
    }
    let mut t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; 
    if t1 < 0.0 { 
      n1 = 0.0; 
    } else { 
      t1 *= t1; 
      n1 = t1 * t1 * dot3(GRAD3[gi1 as usize], x1, y1, z1); 
    } 

    let mut t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; 
    if t2 < 0.0 { 
      n2 = 0.0; 
    }
    else { 
      t2 *= t2; 
      n2 = t2 * t2 * dot3(GRAD3[gi2 as usize], x2, y2, z2); 
    } 

    let mut t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; 
    if t3 < 0.0 {
      n3 = 0.0; 
    } else { 
      t3 *= t3; 
      n3 = t3 * t3 * dot3(GRAD3[gi3 as usize], x3, y3, z3); 
    } 

    // Add contributions from each corner to get the final noise value. 
    // The result is scaled to stay just inside [-1,1] 
    return 32.0*(n0 + n1 + n2 + n3); 

  }

}