1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//! # Collection of traits that bases must implement
use crate::enums::{BaseKind, TransformKind};
use crate::utils::{array_resized_axis, check_array_axis};
use ndarray::{Array, Array2, ArrayBase, Axis, Data, DataMut, Dimension, Zip};
use num_traits::identities::Zero;

/// Base super trait
pub trait Base<T>:
    BaseSize
    + BaseMatOpLaplacian
    + BaseMatOpDiffmat
    + BaseMatOpStencil
    + BaseElements
    + BaseGradient<T>
    + BaseFromOrtho<T>
    + BaseTransform
where
    T: Zero + Copy,
{
}

impl<A, T> Base<T> for A
where
    T: Zero + Copy,
    A: BaseSize
        + BaseMatOpLaplacian
        + BaseMatOpDiffmat
        + BaseMatOpStencil
        + BaseElements
        + BaseGradient<T>
        + BaseFromOrtho<T>
        + BaseTransform,
{
}

/// Dimensions
pub trait BaseSize {
    /// Size in physical space
    fn len_phys(&self) -> usize;

    /// Size in spectral space
    fn len_spec(&self) -> usize;

    /// Size of orthogonal space
    fn len_orth(&self) -> usize;
}

/// Coordinates and base functions
pub trait BaseElements {
    /// Real valued scalar type
    type RealNum;

    /// Return kind of base
    fn base_kind(&self) -> BaseKind;

    /// Return kind of transform
    fn transform_kind(&self) -> TransformKind;

    /// Coordinates in physical space
    fn coords(&self) -> Vec<Self::RealNum>;
}

/// Collection of differentiation matrix operators
pub trait BaseMatOpDiffmat {
    /// Scalar type of matrix
    type NumType;

    /// Explicit differential operator $ D $
    ///
    /// Matrix-based version of [`BaseGradient::gradient()`]
    fn diffmat(&self, _deriv: usize) -> Array2<Self::NumType>;

    /// Explicit inverse of differential operator $ D^* $
    ///
    /// Returns ``(D_pinv, I_pinv)``, where `D_pinv` is the pseudoinverse
    /// and ``I_pinv`` the corresponding pseudoidentity matrix, such
    /// that
    ///
    /// ```text
    /// D_pinv @ D = I_pinv
    /// ```
    ///
    /// Can be used as a preconditioner.
    fn diffmat_pinv(&self, _deriv: usize) -> (Array2<Self::NumType>, Array2<Self::NumType>);
}

/// Collection of stencil matrix operators
pub trait BaseMatOpStencil {
    /// Scalar type of matrix
    type NumType;

    /// Transformation stencil composite -> orthogonal space
    fn stencil(&self) -> Array2<Self::NumType>;

    /// Inverse of transformation stencil
    fn stencil_inv(&self) -> Array2<Self::NumType>;
}

/// Collection of *Laplacian* matrix operators
pub trait BaseMatOpLaplacian {
    /// Scalar type of matrix
    type NumType;

    /// Laplacian $ L $
    fn laplacian(&self) -> Array2<Self::NumType>;

    /// Pseudoinverse matrix of Laplacian $ L^{-1} $
    ///
    /// Returns pseudoinverse and pseudoidentity,i.e
    /// ``(D_pinv, I_pinv)``
    ///
    /// ```text
    /// D_pinv @ D = I_pinv
    /// ```
    fn laplacian_pinv(&self) -> (Array2<Self::NumType>, Array2<Self::NumType>);
}

/// # Transform from orthogonal <-> composite base
pub trait BaseFromOrtho<T>: BaseSize
where
    T: Zero + Copy,
{
    /// ## Composite coefficients -> Orthogonal coefficients
    fn to_ortho_slice(&self, indata: &[T], outdata: &mut [T]);

    /// ## Orthogonal coefficients -> Composite coefficients
    fn from_ortho_slice(&self, indata: &[T], outdata: &mut [T]);

    /// ## Composite coefficients -> Orthogonal coefficients
    fn to_ortho<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<T, D>
    where
        S: Data<Elem = T>,
        D: Dimension,
    {
        let mut outdata = array_resized_axis(indata, self.len_orth(), axis);
        self.to_ortho_inplace(indata, &mut outdata, axis);
        outdata
    }

    apply_along_axis!(
        /// ## Composite coefficients -> Orthogonal coefficients
        to_ortho_inplace,
        T,
        T,
        to_ortho_slice,
        len_spec,
        len_orth,
        "to_ortho"
    );

    /// ## Composite coefficients -> Orthogonal coefficients
    fn from_ortho<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<T, D>
    where
        S: Data<Elem = T>,
        D: Dimension,
    {
        let mut outdata = array_resized_axis(indata, self.len_spec(), axis);
        self.from_ortho_inplace(indata, &mut outdata, axis);
        outdata
    }

    apply_along_axis!(
        /// ## Composite coefficients -> Orthogonal coefficients
        from_ortho_inplace,
        T,
        T,
        from_ortho_slice,
        len_orth,
        len_spec,
        "from_ortho"
    );

    /// ## Composite coefficients -> Orthogonal coefficients  (Parallel)
    fn to_ortho_par<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<T, D>
    where
        S: Data<Elem = T>,
        D: Dimension,
        Self: Sync,
        T: Send + Sync,
    {
        let mut outdata = array_resized_axis(indata, self.len_orth(), axis);
        self.to_ortho_inplace_par(indata, &mut outdata, axis);
        outdata
    }

    par_apply_along_axis!(
        /// ## Composite coefficients -> Orthogonal coefficients (Parallel)
        to_ortho_inplace_par,
        T,
        T,
        to_ortho_slice,
        len_spec,
        len_orth,
        "to_ortho"
    );

    /// ## Composite coefficients -> Orthogonal coefficients  (Parallel)
    fn from_ortho_par<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<T, D>
    where
        S: Data<Elem = T>,
        D: Dimension,
        Self: Sync,
        T: Send + Sync,
    {
        let mut outdata = array_resized_axis(indata, self.len_spec(), axis);
        self.from_ortho_inplace_par(indata, &mut outdata, axis);
        outdata
    }

    par_apply_along_axis!(
        /// ## Composite coefficients -> Orthogonal coefficients (Parallel)
        from_ortho_inplace_par,
        T,
        T,
        from_ortho_slice,
        len_orth,
        len_spec,
        "from_ortho"
    );
}

/// The associated types *Physical* and *Spectral* refer
/// to the scalar types in the physical and spectral space.
/// For example, Fourier transforms from real-to-complex,
/// while Chebyshev transforms from real-to-real.
pub trait BaseTransform: BaseSize {
    /// ## Scalar type in physical space
    type Physical;

    /// ## Scalar type in spectral space
    type Spectral;

    /// ## Physical values -> Spectral coefficients
    ///
    /// Transforms a one-dimensional slice.
    fn forward_slice(&self, indata: &[Self::Physical], outdata: &mut [Self::Spectral]);

    /// ## Spectral coefficients -> Physical values
    ///
    /// Transforms a one-dimensional slice.
    fn backward_slice(&self, indata: &[Self::Spectral], outdata: &mut [Self::Physical]);

    /// ## Physical values -> Spectral coefficients
    fn forward<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<Self::Spectral, D>
    where
        S: Data<Elem = Self::Physical>,
        D: Dimension,
        Self::Physical: Clone,
        Self::Spectral: Zero + Clone + Copy,
    {
        let mut outdata = array_resized_axis(indata, self.len_spec(), axis);
        self.forward_inplace(indata, &mut outdata, axis);
        outdata
    }

    apply_along_axis!(
        /// ## Physical values -> Spectral coefficients
        forward_inplace,
        Self::Physical,
        Self::Spectral,
        forward_slice,
        len_phys,
        len_spec,
        "forward"
    );

    /// ## Spectral coefficients -> Physical values
    fn backward<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<Self::Physical, D>
    where
        S: Data<Elem = Self::Spectral>,
        D: Dimension,
        Self::Spectral: Clone,
        Self::Physical: Zero + Clone + Copy,
    {
        let mut outdata = array_resized_axis(indata, self.len_phys(), axis);
        self.backward_inplace(indata, &mut outdata, axis);
        outdata
    }

    apply_along_axis!(
        /// ## Spectral coefficients -> Physical values
        backward_inplace,
        Self::Spectral,
        Self::Physical,
        backward_slice,
        len_spec,
        len_phys,
        "backward"
    );

    /// ## Physical values -> Spectral coefficients (Parallel)
    fn forward_par<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<Self::Spectral, D>
    where
        S: Data<Elem = Self::Physical>,
        D: Dimension,
        Self::Physical: Clone + Send + Sync,
        Self::Spectral: Zero + Clone + Copy + Send + Sync,
        Self: Sync,
    {
        let mut outdata = array_resized_axis(indata, self.len_spec(), axis);
        self.forward_inplace_par(indata, &mut outdata, axis);
        outdata
    }

    par_apply_along_axis!(
        /// ## Physical values -> Spectral coefficients (Parallel)
        forward_inplace_par,
        Self::Physical,
        Self::Spectral,
        forward_slice,
        len_phys,
        len_spec,
        "forward"
    );

    /// ## Spectral coefficients -> Physical values (Parallel)
    fn backward_par<S, D>(&self, indata: &ArrayBase<S, D>, axis: usize) -> Array<Self::Physical, D>
    where
        S: Data<Elem = Self::Spectral>,
        D: Dimension,
        Self::Spectral: Clone + Send + Sync,
        Self::Physical: Zero + Clone + Copy + Send + Sync,
        Self: Sync,
    {
        let mut outdata = array_resized_axis(indata, self.len_phys(), axis);
        self.backward_inplace_par(indata, &mut outdata, axis);
        outdata
    }

    par_apply_along_axis!(
        /// ## Spectral coefficients -> Physical values (Parallel)
        backward_inplace_par,
        Self::Spectral,
        Self::Physical,
        backward_slice,
        len_spec,
        len_phys,
        "backward"
    );
}

/// # Gradient
pub trait BaseGradient<T>: BaseSize
where
    T: Zero + Copy,
{
    /// Differentiate in spectral space
    fn gradient_slice(&self, indata: &[T], outdata: &mut [T], n_times: usize);

    /// Differentiate in spectral space
    fn gradient<S, D>(&self, indata: &ArrayBase<S, D>, n_times: usize, axis: usize) -> Array<T, D>
    where
        S: Data<Elem = T>,
        D: Dimension,
    {
        let mut outdata = array_resized_axis(indata, self.len_orth(), axis);
        self.gradient_inplace(indata, &mut outdata, n_times, axis);
        outdata
    }

    /// Differentiate in spectral space
    fn gradient_inplace<S1, S2, D>(
        &self,
        indata: &ArrayBase<S1, D>,
        outdata: &mut ArrayBase<S2, D>,
        n_times: usize,
        axis: usize,
    ) where
        S1: Data<Elem = T>,
        S2: Data<Elem = T> + DataMut,
        D: Dimension,
    {
        assert!(indata.is_standard_layout());
        assert!(outdata.is_standard_layout());
        check_array_axis(indata, self.len_spec(), axis, "gradient");
        check_array_axis(outdata, self.len_orth(), axis, "gradient");

        let outer_axis = outdata.ndim() - 1;
        if axis == outer_axis {
            // Data is contiguous in memory
            Zip::from(indata.rows())
                .and(outdata.rows_mut())
                .for_each(|x, mut y| {
                    self.gradient_slice(x.as_slice().unwrap(), y.as_slice_mut().unwrap(), n_times);
                });
        } else {
            // Data is *not* contiguous in memory.
            let mut scratch: Vec<T> = vec![T::zero(); outdata.shape()[axis]];
            Zip::from(indata.lanes(Axis(axis)))
                .and(outdata.lanes_mut(Axis(axis)))
                .for_each(|x, mut y| {
                    self.gradient_slice(&x.to_vec(), &mut scratch, n_times);
                    for (yi, si) in y.iter_mut().zip(scratch.iter()) {
                        *yi = *si;
                    }
                });
        }
    }

    /// Differentiate in spectral space
    fn gradient_par<S, D>(
        &self,
        indata: &ArrayBase<S, D>,
        n_times: usize,
        axis: usize,
    ) -> Array<T, D>
    where
        S: Data<Elem = T>,
        D: Dimension,
        T: Send + Sync,
        Self: Sync,
    {
        let mut outdata = array_resized_axis(indata, self.len_orth(), axis);
        self.gradient_inplace_par(indata, &mut outdata, n_times, axis);
        outdata
    }

    /// Differentiate in spectral space
    fn gradient_inplace_par<S1, S2, D>(
        &self,
        indata: &ArrayBase<S1, D>,
        outdata: &mut ArrayBase<S2, D>,
        n_times: usize,
        axis: usize,
    ) where
        S1: Data<Elem = T>,
        S2: Data<Elem = T> + DataMut,
        D: Dimension,
        T: Send + Sync,
        Self: Sync,
    {
        assert!(indata.is_standard_layout());
        assert!(outdata.is_standard_layout());
        check_array_axis(indata, self.len_spec(), axis, "gradient");
        check_array_axis(outdata, self.len_orth(), axis, "gradient");

        let outer_axis = outdata.ndim() - 1;
        if axis == outer_axis {
            // Data is contiguous in memory
            Zip::from(indata.rows())
                .and(outdata.rows_mut())
                .par_for_each(|x, mut y| {
                    self.gradient_slice(x.as_slice().unwrap(), y.as_slice_mut().unwrap(), n_times);
                });
        } else {
            // Data is *not* contiguous in memory.
            let scratch_len = outdata.shape()[axis];
            Zip::from(indata.lanes(Axis(axis)))
                .and(outdata.lanes_mut(Axis(axis)))
                .par_for_each(|x, mut y| {
                    let mut scratch: Vec<T> = vec![T::zero(); scratch_len];
                    self.gradient_slice(&x.to_vec(), &mut scratch, n_times);
                    for (yi, si) in y.iter_mut().zip(scratch.iter()) {
                        *yi = *si;
                    }
                });
        }
    }
}

// /// Applys function along lanes of *axis*
// fn apply_along_axis<F, S1, S2, D, T1, T2>(
//     &self,
//     indata: &ArrayBase<S1, D>,
//     outdata: &mut ArrayBase<S2, D>,
//     axis: usize,
//     function: &F,
// ) where
//     S1: Data<Elem = T1>,
//     S2: Data<Elem = T2> + DataMut,
//     D: Dimension,
//     F: Fn(&Self, &[T1], &mut [T2]),
//     T1: Clone,
//     T2: Clone + Zero + Copy,
// {
//     let outer_axis = indata.ndim() - 1;
//     if axis == outer_axis {
//         // Data is contiguous in memory
//         Zip::from(indata.lanes(Axis(axis)))
//             .and(outdata.lanes_mut(Axis(axis)))
//             .for_each(|x, mut y| {
//                 function(self, x.as_slice().unwrap(), y.as_slice_mut().unwrap());
//             });
//     } else {
//         // Data is *not* contiguous in memory.
//         let mut scratch: Vec<T2> = vec![T2::zero(); outdata.shape()[axis]];
//         Zip::from(indata.lanes(Axis(axis)))
//             .and(outdata.lanes_mut(Axis(axis)))
//             .for_each(|x, mut y| {
//                 function(self, &x.to_vec(), &mut scratch);
//                 for (yi, si) in y.iter_mut().zip(scratch.iter()) {
//                     *yi = *si;
//                 }
//             });
//     }
// }