1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//
// Fungi module: hash tries with names, holding natural numbers
//
fgi_mod!{
    /// Hash trie of natural numbers, each associated with a (unique) name.
    ///
    /// Note: The hash structure uses the hashes of the natural number
    /// elements, not the hashes of the names.
    ///
    type Trie  = (
        rec trie. 
            foralli (X,Y):NmSet.
            ( + Unit 
                + (x Nm[X] x Nat)
                + (exists (X1,X2):NmSet| ((X1%X2)=X:NmSet).
                   (x (Ref[Y](trie[X1][Y]))
                    x (Ref[Y](trie[X2][Y])))
                )
            )
    );
    type RefTrie = (
        foralli (X,Y):NmSet.
            Ref[Y] (Trie[X][Y])
    );            

    // Names as natural numbers
    nmtm  Zero = ([]);
    idxtm Succ = (#x:Nm.{[] * x});
    idxtm Gte  = (#x:Nm. (Succ)^* {x});
    idxtm Nat  = ({Gte} (nmtm []));

    // Names for trie (path) insertion
    idxtm Ins = (#X:NmSet. X * Nat);
    
    // Write sets for Trie and Dedup:
    idxtm WS_Trie  = (#X:NmSet. {@!} ({Ins} X));
    idxtm Out_Dedup = (#X:NmSet. {@@r} * X);
    idxtm WS_Dedup = (#X:NmSet. 
                      ({WS_Trie} X)   % 
                      ({@@dd}*X)      % 
                      ({Out_Dedup} X) ) ;

    fn nat_hash_bit:(
        Thk[0] 0 Nat -> 0 Nat -> 0 F Bool
    ) = {
        unsafe (2) trapdoor::nat_hash_bit
    }
    
    fn nat_print:(
        Thk[0] 0 Nat -> 0 F Unit
    ) = {
        unsafe (1) trapdoor::nat_print
    }
    
    fn nat_print2:(
        Thk[0] 0 Nat -> 0 Nat -> 0 F Unit
    ) = {
        unsafe (2) trapdoor::nat_print2
    }

    fn print_found_duplicate:(
        Thk[0] 0 Nat -> 0 F Unit
    ) = {
        unsafe (1) trapdoor::print_found_duplicate
    }
    
    /// Like child fn, but returns both children, and the fact that
    /// the names in the pair of children are apart.
    fn children:(
        Thk[0] foralli (X,Y):NmSet. 
            0 RefTrie[X][Y] ->
        {0;Y} F exists (X1,X2):NmSet|((X1%X2)=X:NmSet).
            (x RefTrie[X1][Y] 
             x RefTrie[X2][Y]
            )
    ) = { 
        #t.
        let emp : (RefTrie[0][0]) = {ref 0 roll inj1 ()}        
        let tt = {get t}
        unroll match tt {
            _emp => { ret pack (0,0) (emp, emp) }
            leaf => { ret pack (0,0) (emp, emp) }
            bin  => { ret bin }
        }
    }

    /// True if the given trie is a leaf holding the given nat
    fn is_leaf_with_nat:(
        Thk[0] foralli (X,Y):NmSet. 
            0 RefTrie[X][Y] -> 0 Nat -> {0;Y} F Bool
    ) = {
        #t. #n.
        let tt = {get t}
        unroll match tt {
            _emp => { ret false }
            leaf => { 
                let (_x, y) = {ret leaf}
                let b = {n == y}
                // let _x = {
                //     if (b) {
                //         let _x = {{force print_found_duplicate} y}
                //         ret ()
                //     } else { 
                //         let (a, b) = {ret (n,y)}
                //         Error: HASH COLLISION
                //     }
                // }
                ret b
            }
            bin => { ret false }
        }
    }
            
    fn trie_replrec:(
        Thk[0] foralli (X1,X2,Y):NmSet | ((X1%X2)=X:NmSet).
            foralli Z:Nm.
            0 RefTrie[X1][Y] -> 
            0 Nm[X2] -> 
            0 Nat -> 
            0 Nat -> 
            0 Nm[{Z}] -> 
        {{WS_Trie} X2; Y}
        F (x RefTrie[X1 % X2][Y U ({WS_Trie} X2)]
           x Bool)
    ) = {
        #t. #x. #y. #i. #ni.
        if {i == 12} {
            // base case: create trie leaf node
            let b = {{force is_leaf_with_nat}[X1][Y] t y}
            let r : (RefTrie[X2][{WS_Trie} X2]) = {
                ref {x,ni} roll inj2 inj1 (x, y)
            }
            ret (r, b)
        } else {
            // recursive case
            let j   = {i + 1}
            let nj  = {(name []) , ni}
            let tc = {{force children}[X1][Y] t}
            unpack (X1l, X1r) tc = tc
            let (lc,rc) = {ret tc}
            let bit = {{force nat_hash_bit} y i}
            if ( bit ) {
                let (tx, b) = {{force trie_replrec}[X1l][X2][Y][nmtm []*Z] lc x y j nj}
                let r : (RefTrie[X1 % X2][Y U ({WS_Trie} X2)]) = {
                    ref {x,ni} roll inj2 inj2 pack (X1l % X2, X1r) (tx, rc)
                }
                ret (r, b)
            } else {
                let (tx, b) = {{force trie_replrec}[X1r][X2][Y][nmtm []*Z] rc x y j nj}
                let r : (RefTrie[X1 % X2][Y U ({WS_Trie} X2)]) = {
                    ref {x,ni} roll inj2 inj2 pack (X1l, X1r % X2) (lc, tx)
                }
                ret (r, b)
            }
        }
    }

    // TODO: Fix alpha conversation for foralli-bound variables (e.g.,
    // change Z1 and Z2 to X1 and X2 below to witness an error).

    fn trie_replace:(
        Thk[0] foralli (Z1,Z2,YZ):NmSet | ((Z1%Z2)=Z:NmSet).
            0 RefTrie[Z1][YZ] -> 
            0 Nm[Z2] -> 
            0 Nat -> 
        {{WS_Trie} Z2; YZ}
        F (x RefTrie[Z1 % Z2][YZ U ({WS_Trie} Z2)] 
           x Bool)
    ) = {
        #t.#x.#y. {force trie_replrec}[Z1][Z2][YZ][{[]}] t x y 0 (name [])
    }
}

pub mod static_tests {
    #[test]
    pub fn typing() { fgi_listing_test!{
        open crate::examples::trie_nat;
        ret 0
    }}
}

pub mod trapdoor {
    // This code essentially extends the Fungi evaluator
    //use ast::{Name};
    use crate::dynamics::{RtVal,ExpTerm};
    //use adapton::engine;

    pub fn hash_usize(x:usize) -> u64 {
        use std::collections::hash_map::DefaultHasher;
        use std::hash::{Hash,Hasher};
        let mut hasher = DefaultHasher::new();
        x.hash(&mut hasher);
        hasher.finish()
    }

    pub fn nat_hash_bit(args:Vec<RtVal>) -> ExpTerm {
        match (&args[0], &args[1])  {
            (RtVal::Nat(ref n1), RtVal::Nat(ref n2))  => { 
                ExpTerm::Ret(RtVal::Bool( hash_usize(*n1) & (1 << *n2) != 0))
            }
            (v1, v2) => panic!("expected two natural numbers, not: {:?} and {:?}", 
                               v1, v2)
        }
    }
    
    pub fn nat_print(args:Vec<RtVal>) -> ExpTerm {
        match &args[0]  {
            RtVal::Nat(ref n)  => { 
                println!("nat_print: {:?}", n);
                ExpTerm::Ret(RtVal::Unit)
            }
            v => panic!("expected a natural number, not: {:?}", v)
        }
    }
    
    pub fn nat_print2(args:Vec<RtVal>) -> ExpTerm {
        match (&args[0], &args[1])  {
            (RtVal::Nat(ref n1), RtVal::Nat(ref n2))  => { 
                println!("nat_print2: {:?} {:?}", n1, n2);
                ExpTerm::Ret(RtVal::Unit)
            }
            v => panic!("expected a natural number, not: {:?}", v)
        }
    }

    pub fn print_found_duplicate(args:Vec<RtVal>) -> ExpTerm {
        match &args[0]  {
            RtVal::Nat(ref n)  => { 
                println!("Found duplicate: {:?}", n);
                ExpTerm::Ret(RtVal::Unit)
            }
            v => panic!("expected a natural number, not: {:?}", v)
        }
    }
}