1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*! Evaluation semantics.

This module gives the incremental semantics of Fungi programs as a
"big-step" evaluation function, 
[`eval`](https://docs.rs/fungi-lang/0/src/fungi_lang/eval.rs.html).

To do so, it uses an external library ([Adapton in
Rust](http://adapton.org)) to create and maintain the "demanded
computation graph" (the DCG), that underpins change propagation.

See also: 
[`reduce`](https://docs.rs/fungi-lang/0/src/fungi_lang/reduce.rs.html).

*/

// ## Implementation discussion
//
// The Rust types and functions below demonstrate how closely the
// IODyn Target AST corresponds to the primitive notions of Adapton,
// namely `ref`s and `thunk`s, and their observation/demand
// operations, `get` and `force`, respectively.
//
// In particular, the semantics of `ref` and `thunk` are _entirely_
// encapsulated by the Adapton run-time library, leaving the
// dynamics semantics for other expression forms to `eval` to define.
// In this sense, the language built around the `ref` and `thunk`
// primitives is open-ended.
//
// Given this language choice, as usual, we choose STLC in CBPV, with
// product and sum types.  Other language/semantics design choices in
// this module are guided by our choice of "CBPV +
// environment-passing-style", as discussed further in this module's
// comments.
//
// ## Val vs RtVal
//
// We distinguish between programmer-written values (Val) and closed,
// run-time values (RtVal).  Environments map variables to (closed)
// run-time values.
//
// ## Exp vs TermExp
//
// We distinguish between (open) expressions and (fully evaluated)
// terminal expressions, which are closed.

use adapton::macros::*;
use adapton::engine::{thunk,NameChoice};
use adapton::engine;

use ast::{Exp,PrimApp,Name,NameTm};
use std::rc::Rc;
use dynamics::*;

/// Dynamic type errors ("stuck cases" for evaluation)
///
/// For each place in the `eval` function where a dynamic type error
/// may arise that prevents us from progressing, we give a constructor
/// with the relevant information (first for documentation purposes,
/// and secondly for future error messages).
#[derive(Clone,Debug,Eq,PartialEq)]
pub enum EvalTyErr {
    // let case
    LetNonRet(ExpTerm),
    // app case
    AppNonLam(ExpTerm),
    // split case
    SplitNonPair(RtVal),
    // if case
    IfNonBool(RtVal),
    // case case
    CaseNonInj(RtVal),
    // unroll case
    UnrollNonRoll(RtVal),
    // thunk case
    ThunkNonName(RtVal),    
    ForceNonThunk(RtVal),
    RefThunkNonThunk(RtVal),
    // ref case
    RefNonName(RtVal),
    GetNonRef(RtVal),
    // write scope case
    WriteScopeWithoutName0,
    WriteScopeWithoutName1,
    WriteScopeWithoutName2,
    // name fn app
    NameFnApp0,
    NameFnApp1,
    // name bin
    PrimAppNameBin(RtVal,RtVal),
    // nat operations
    PrimAppNatLt(RtVal,RtVal),
    PrimAppNatEq(RtVal,RtVal),
    PrimAppNatLte(RtVal,RtVal),
    PrimAppNatPlus(RtVal,RtVal),
}

fn eval_type_error<A>(err:EvalTyErr, env:EnvRec, e:Exp) -> A {
    panic!("eval_type_error: {:?}:\n\tenv:{:?}\n\te:{:?}\n", err, env, e)
}


/// Big-step evaluation
///
/// Under the given closing environment, evaluate the given Tgt-AST
/// expression, producing a terminal expression (a la CBPV), typically
/// with run-time values.
//
// # Implementation Discussion
//
// Adapton primitives: The primitives `thunk`, `ref`, `force` and
// `get` each use the Adapton run-time library in a simple way that
// directly corresponds with the given expression form.
//
// CPBV consequences: Due to CBPV style, most cases are simple (0 or 1
// recursive calls).  The only two cases that have multiple recursive
// calls are `let` and `app`, which necessarily each have two
// recursive calls to `eval`. In CBV style, many more cases would
// require multiple recursive calls to eval.
//
pub fn eval(env:EnvRec, e:Exp) -> ExpTerm {
    match e.clone() {
        // basecase 1a: lambdas are terminal computations
        Exp::Lam(x, e)   => { ExpTerm::Lam(env, x, e) }
        // basecase 1b: host functions are terminal computations
        Exp::HostFn(hef) => { ExpTerm::HostFn(hef, vec![]) }
        // basecase 2: returns are terminal computations
        Exp::Ret(v)      => { ExpTerm::Ret(close_val(&env, &v)) }

        // ignore types at run time:
        Exp::DefType(_x, _a, e)  => { return eval(env, (*e).clone()) }
        Exp::AnnoC(e1,_ct)       => { return eval(env, (*e1).clone()) }
        Exp::AnnoE(e1,_et)       => { return eval(env, (*e1).clone()) }

        // ignore doc at run time:        
        Exp::Doc(_,e1)           => { return eval(env, (*e1).clone()) }

        // XXX/TODO: Extend context with values/thunks from these definitions:
        Exp::UseAll(_, e)        => { return eval(env, (*e).clone()) }
        Exp::Decls(_, e)         => { return eval(env, (*e).clone()) }
        
        // save a copy of e as thunk f in e
        Exp::Fix(f,e1) => {
            let env_saved = env.clone();
            let env = env_push(&env, &f, RtVal::ThunkAnon(env_saved, e));
            return eval(env, (*e1).clone())
        }
        Exp::Unroll(v, x, e1) => {
            match close_val(&env, &v) {
                RtVal::Roll(v) => {
                    let env = env_push(&env, &x, (*v).clone());
                    return eval(env, (*e1).clone())
                },
                v => eval_type_error(EvalTyErr::UnrollNonRoll(v), env, e)
            }
        }
        Exp::Unpack(_i,_x,_v,_e) => { unimplemented!("eval unpack") }
        Exp::Thunk(v, e1) => {
            match close_val(&env, &v) {
                RtVal::Name(n) => { // create engine thunk named n
                    // suspending evaluation of expression e1:
                    let n = Some(engine_name_of_ast_name(n));
                    let t = thunk!([n]? eval ; env:env, e:(*e1).clone() );
                    ExpTerm::Ret(RtVal::Thunk(t))
                },
                v => eval_type_error(EvalTyErr::ThunkNonName(v), env, e)
            }
        }
        Exp::Ref(v1, v2) => {
            match close_val(&env, &v1) {
                RtVal::Name(n) => { // create engine ref named n, holding v2
                    let n = engine_name_of_ast_name(n);
                    let v2 = close_val(&env, &v2);
                    let r = engine::cell(n, v2);
                    ExpTerm::Ret(RtVal::Ref(r))
                },
                v => eval_type_error(EvalTyErr::RefNonName(v), env, e)
            }
        }
        Exp::RefAnon(v) => {
            let v = close_val(&env, &v);
            let r = engine::put(v);
            ExpTerm::Ret(RtVal::Ref(r))
        },
        Exp::Let(x,e1,e2) => {
            match eval(env.clone(), (*e1).clone()) {
                ExpTerm::Ret(v) => {
                    let env = env_push(&env, &x, v);
                    return eval(env, (*e2).clone())
                },
                term => eval_type_error(EvalTyErr::LetNonRet(term), env, e)
            }
        }
        Exp::App(e1, v) => {
            let v = close_val(&env, &v);
            match eval(env.clone(), (*e1).clone()) {
                ExpTerm::Lam(mut env, x, e2) => {
                    let env = env_push(&env, &x, v);
                    return eval(env, (*e2).clone())
                },
                ExpTerm::HostFn(hef, mut args) => {
                    // Call-by-push-value!
                    args.push(v);
                    if args.len() < hef.arity {
                        // keep pushing args:
                        return ExpTerm::HostFn(hef, args)
                    } else {
                        // done pushing args:
                        assert_eq!(args.len(), hef.arity);
                        return (hef.eval)(args)
                    }
                },
                term => eval_type_error(EvalTyErr::AppNonLam(term), env, e)
            }
        }
        Exp::IdxApp(_e1, _i) => { unimplemented!("Index application") }
        Exp::Split(v, x, y, e1) => {
            match close_val(&env, &v) {
                RtVal::Pair(v1, v2) => {
                    let env = env_push(&env, &x, (*v1).clone());
                    let env = env_push(&env, &y, (*v2).clone());
                    return eval(env, (*e1).clone())
                },
                v => eval_type_error(EvalTyErr::SplitNonPair(v), env, e)
            }
        }
        Exp::IfThenElse(v, e1, e2) => {
            match close_val(&env, &v) {
                RtVal::Bool(b) => {
                    if b { return eval(env, (*e1).clone()) }
                    else { return eval(env, (*e2).clone()) }
                }
                v => eval_type_error(EvalTyErr::IfNonBool(v), env, e)
            }
        }
        Exp::Case(v, x, ex, y, ey) => {
            match close_val(&env, &v) {
                RtVal::Inj1(v) => {
                    let env = env_push(&env, &x, (*v).clone());
                    return eval(env, (*ex).clone())
                },
                RtVal::Inj2(v) => {
                    let env = env_push(&env, &y, (*v).clone());
                    return eval(env, (*ey).clone())
                },
                v => eval_type_error(EvalTyErr::SplitNonPair(v), env, e)
            }
        }
        Exp::Get(v) => {
            match close_val(&env, &v) {
                RtVal::Ref(a) => { ExpTerm::Ret(engine::force(&a)) },
                v => eval_type_error(EvalTyErr::GetNonRef(v), env, e)
            }
        }
        Exp::Force(v) => {
            match close_val(&env, &v) {
                RtVal::Thunk(a)          => { engine::force(&a) },
                RtVal::ThunkAnon(env, e) => { return eval(env, e) },
                v => eval_type_error(EvalTyErr::ForceNonThunk(v), env, e)                    
            }
        }
        Exp::PrimApp(PrimApp::RefThunk(v)) => {
            fn val_of_retval (et:ExpTerm) -> RtVal {
                match et {
                    ExpTerm::Ret(v) => v,
                    _ => unreachable!()
                }
            };
            match close_val(&env, &v) {
                RtVal::Thunk(a) => {
                    let r = engine::thunk_map(a, Rc::new(val_of_retval));
                    let v = engine::force(&r);
                    ExpTerm::Ret(
                        RtVal::Pair(Rc::new(RtVal::Ref(r)),
                                    Rc::new(v)))
                },
                v => eval_type_error(EvalTyErr::RefThunkNonThunk(v), env, e)
            }
        }
        Exp::WriteScope(v, e1) => {
            // Names vs namespace functions: Here, v is a name
            // function value, but the current Adapton engine
            // implementation of namespaces, aka "write scopes",
            // requires that each is given by a name, which is always
            // prepended to any allocated names; the engine lacks the
            // more general notion of a "name function" (which can
            // express more general name constructions than just
            // "prepend").  For now, we "translate" namespace
            // functions into names, by projecting out their "names"
            // from an eta-expanded prepend operation.  If we fail to
            // find this pattern, we fail (TODO: enforce statically?).
            match close_val(&env, &v) {
                RtVal::NameFn(n) =>
                    match proj_namespace_name(nametm_eval(n)) {
                        None => eval_type_error(EvalTyErr::WriteScopeWithoutName1, env, e),
                        Some(n) => {
                            match nametm_eval(n) {
                                NameTmVal::Name(n) => {
                                    let ns_name = engine_name_of_ast_name(n);
                                    engine::ns(ns_name, ||{ eval(env, (*e1).clone()) })
                                },                                    
                                _ => eval_type_error(EvalTyErr::WriteScopeWithoutName2, env, e),
                            }
                        }
                    },
                _ => eval_type_error(EvalTyErr::WriteScopeWithoutName0, env, e),
            }
        }
        Exp::NameFnApp(v1, v2) => {
            // (value-injected) name function application: apply
            // (injected) name function v1 to (injected) name v2; the
            // evaluation itself happens in the name term sublanguage,
            // via nametm_eval.  The result is an (injected) name.
            match (close_val(&env, &v1), close_val(&env, &v2)) {
                ( RtVal::NameFn(nf), RtVal::Name(n) ) => {
                    match nametm_eval(NameTm::App(Rc::new(nf),
                                                  Rc::new(NameTm::Name(n)))) {
                        NameTmVal::Name(n) => ExpTerm::Ret(RtVal::Name(n)),
                        _ => eval_type_error(EvalTyErr::NameFnApp1, env, e),
                    }
                },
                _ => eval_type_error(EvalTyErr::NameFnApp0, env, e),
            }
        }
        Exp::DebugLabel(label, msg, e) => {
            let label : Option<engine::Name> =
                label.map( engine_name_of_ast_name );
            engine::reflect_dcg::debug_effect(label, msg);
            return eval(env, (*e).clone())
        }
        Exp::Unimp => unimplemented!(),
        Exp::NoParse(s) => panic!("Evaluation reached unparsed program text: `{}`", s),

        // Names: Primitive operation for 
        
        Exp::PrimApp(PrimApp::NameBin(v1,v2)) => {
            match (close_val(&env, &v1), close_val(&env, &v2)) {
                (RtVal::Name(n1),RtVal::Name(n2)) => {
                    ExpTerm::Ret(RtVal::Name(Name::Bin(Rc::new(n1), Rc::new(n2))))
                },
                (v1, v2) => eval_type_error(EvalTyErr::PrimAppNameBin(v1,v2), env, e),
            }
        }
        
        //
        // In-built primitives for basetypes (naturals, bools, etc.)
        //
        
        Exp::PrimApp(PrimApp::NatPlus(v1,v2)) => {
            match (close_val(&env, &v1), close_val(&env, &v2)) {
                (RtVal::Nat(n1),RtVal::Nat(n2)) => {
                    ExpTerm::Ret(RtVal::Nat(n1 + n2))
                },
                (v1, v2) => eval_type_error(EvalTyErr::PrimAppNatPlus(v1,v2), env, e),
            }
        }        
        Exp::PrimApp(PrimApp::NatEq(v1,v2)) => {
            match (close_val(&env, &v1), close_val(&env, &v2)) {
                (RtVal::Nat(n1),RtVal::Nat(n2)) => {
                    ExpTerm::Ret(RtVal::Bool(n1 == n2))
                },
                (v1, v2) => eval_type_error(EvalTyErr::PrimAppNatEq(v1,v2), env, e),
            }
        }
        Exp::PrimApp(PrimApp::NatLt(v1,v2)) => {
            match (close_val(&env, &v1), close_val(&env, &v2)) {
                (RtVal::Nat(n1),RtVal::Nat(n2)) => {
                    ExpTerm::Ret(RtVal::Bool(n1 < n2))
                },
                (v1, v2) => eval_type_error(EvalTyErr::PrimAppNatLt(v1,v2), env, e),
            }
        }
        Exp::PrimApp(PrimApp::NatLte(v1,v2)) => {
            match (close_val(&env, &v1), close_val(&env, &v2)) {
                (RtVal::Nat(n1),RtVal::Nat(n2)) => {
                    ExpTerm::Ret(RtVal::Bool(n1 <= n2))
                },
                (v1, v2) => eval_type_error(EvalTyErr::PrimAppNatLte(v1,v2), env, e),
            }
        }

        
    }
}