1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
use std::fmt;
use std::io;
use std::iter::{self, FromIterator};

use crate::automaton::{AlwaysMatch, Automaton};
use crate::raw;
use crate::stream::{IntoStreamer, Streamer};
use crate::Result;

/// Set is a lexicographically ordered set of byte strings.
///
/// A `Set` is constructed with the `SetBuilder` type. Alternatively, a `Set`
/// can be constructed in memory from a lexicographically ordered iterator
/// of byte strings (`Set::from_iter`).
///
/// A key feature of `Set` is that it can be serialized to disk compactly. Its
/// underlying representation is built such that the `Set` can be memory mapped
/// and searched without necessarily loading the entire set into memory.
///
/// It supports most common operations associated with sets, such as
/// membership, union, intersection, subset/superset, etc. It also supports
/// range queries and automata based searches (e.g. a regular expression).
///
/// Sets are represented by a finite state transducer where output values are
/// always zero. As such, sets have the following invariants:
///
/// 1. Once constructed, a `Set` can never be modified.
/// 2. Sets must be constructed with lexicographically ordered byte sequences.
pub struct Set<D>(raw::Fst<D>);

impl Set<Vec<u8>> {
    /// Create a `Set` from an iterator of lexicographically ordered byte
    /// strings.
    ///
    /// If the iterator does not yield values in lexicographic order, then an
    /// error is returned.
    ///
    /// Note that this is a convenience function to build a set in memory.
    /// To build a set that streams to an arbitrary `io::Write`, use
    /// `SetBuilder`.
    pub fn from_iter<T, I>(iter: I) -> Result<Set<Vec<u8>>>
    where
        T: AsRef<[u8]>,
        I: IntoIterator<Item = T>,
    {
        let mut builder = SetBuilder::memory();
        builder.extend_iter(iter)?;
        Set::new(builder.into_inner()?)
    }
}

impl<D: AsRef<[u8]>> Set<D> {
    /// Creates a set from its representation as a raw byte sequence.
    ///
    /// This accepts anything that can be cheaply converted to a `&[u8]`. The
    /// caller is responsible for guaranteeing that the given bytes refer to
    /// a valid FST. While memory safety will not be violated by invalid input,
    /// a panic could occur while reading the FST at any point.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use fst::Set;
    ///
    /// // File written from a build script using SetBuilder.
    /// # const IGNORE: &str = stringify! {
    /// static FST: &[u8] = include_bytes!(concat!(env!("OUT_DIR"), "/set.fst"));
    /// # };
    /// # static FST: &[u8] = &[];
    ///
    /// let set = Set::new(FST).unwrap();
    /// ```
    pub fn new(data: D) -> Result<Set<D>> {
        raw::Fst::new(data).map(Set)
    }

    /// Tests the membership of a single key.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::Set;
    ///
    /// let set = Set::from_iter(&["a", "b", "c"]).unwrap();
    ///
    /// assert_eq!(set.contains("b"), true);
    /// assert_eq!(set.contains("z"), false);
    /// ```
    pub fn contains<K: AsRef<[u8]>>(&self, key: K) -> bool {
        self.0.contains_key(key)
    }

    /// Return a lexicographically ordered stream of all keys in this set.
    ///
    /// While this is a stream, it does require heap space proportional to the
    /// longest key in the set.
    ///
    /// If the set is memory mapped, then no further heap space is needed.
    /// Note though that your operating system may fill your page cache
    /// (which will cause the resident memory usage of the process to go up
    /// correspondingly).
    ///
    /// # Example
    ///
    /// Since streams are not iterators, the traditional `for` loop cannot be
    /// used. `while let` is useful instead:
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let mut stream = set.stream();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = stream.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"a", b"b", b"c"]);
    /// ```
    #[inline]
    pub fn stream(&self) -> Stream<'_> {
        Stream(self.0.stream())
    }

    /// Return a builder for range queries.
    ///
    /// A range query returns a subset of keys in this set in a range given in
    /// lexicographic order.
    ///
    /// Memory requirements are the same as described on `Set::stream`.
    /// Notably, only the keys in the range are read; keys outside the range
    /// are not.
    ///
    /// # Example
    ///
    /// Returns only the keys in the range given.
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set = Set::from_iter(&["a", "b", "c", "d", "e"]).unwrap();
    /// let mut stream = set.range().ge("b").lt("e").into_stream();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = stream.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"b", b"c", b"d"]);
    /// ```
    #[inline]
    pub fn range(&self) -> StreamBuilder<'_> {
        StreamBuilder(self.0.range())
    }

    /// Executes an automaton on the keys of this set.
    ///
    /// Note that this returns a `StreamBuilder`, which can be used to
    /// add a range query to the search (see the `range` method).
    ///
    /// Memory requirements are the same as described on `Set::stream`.
    ///
    /// # Example
    ///
    /// An implementation of subsequence search for `Automaton` can be used
    /// to search sets:
    ///
    /// ```rust
    /// use fst::automaton::Subsequence;
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// # fn main() { example().unwrap(); }
    /// fn example() -> Result<(), Box<dyn std::error::Error>> {
    ///     let set = Set::from_iter(&[
    ///         "a foo bar", "foo", "foo1", "foo2", "foo3", "foobar",
    ///     ]).unwrap();
    ///
    ///     let matcher = Subsequence::new("for");
    ///     let mut stream = set.search(&matcher).into_stream();
    ///
    ///     let mut keys = vec![];
    ///     while let Some(key) = stream.next() {
    ///         keys.push(String::from_utf8(key.to_vec())?);
    ///     }
    ///     assert_eq!(keys, vec![
    ///         "a foo bar", "foobar",
    ///     ]);
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn search<A: Automaton>(&self, aut: A) -> StreamBuilder<'_, A> {
        StreamBuilder(self.0.search(aut))
    }

    /// Executes an automaton on the values of this set and yields matching
    /// values along with the corresponding matching states in the given
    /// automaton.
    ///
    /// Note that this returns a `StreamWithStateBuilder`, which can be used to
    /// add a range query to the search (see the `range` method).
    ///
    /// Memory requirements are the same as described on `Map::stream`.
    ///
    #[cfg_attr(
        feature = "levenshtein",
        doc = r##"
# Example

An implementation of fuzzy search using Levenshtein automata can be used
to search sets:

```rust
use fst::automaton::Levenshtein;
use fst::{IntoStreamer, Streamer, Set};

# fn main() { example().unwrap(); }
fn example() -> Result<(), Box<dyn std::error::Error>> {
    let set = Set::from_iter(vec![
        "foo",
        "foob",
        "foobar",
        "fozb",
    ]).unwrap();

    let query = Levenshtein::new("foo", 2)?;
    let mut stream = set.search_with_state(&query).into_stream();

    let mut vs = vec![];
    while let Some((v, s)) = stream.next() {
        vs.push((String::from_utf8(v.to_vec())?, s));
    }
    // Currently, there isn't much interesting that you can do with the states.
    assert_eq!(vs, vec![
        ("foo".to_string(), Some(183)),
        ("foob".to_string(), Some(123)),
        ("fozb".to_string(), Some(83)),
    ]);

    Ok(())
}
```
"##
    )]
    pub fn search_with_state<A: Automaton>(
        &self,
        aut: A,
    ) -> StreamWithStateBuilder<'_, A> {
        StreamWithStateBuilder(self.0.search_with_state(aut))
    }

    /// Returns the number of elements in this set.
    #[inline]
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns true if and only if this set is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Creates a new set operation with this set added to it.
    ///
    /// The `OpBuilder` type can be used to add additional set streams
    /// and perform set operations like union, intersection, difference and
    /// symmetric difference.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["a", "y", "z"]).unwrap();
    ///
    /// let mut union = set1.op().add(&set2).union();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = union.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"a", b"b", b"c", b"y", b"z"]);
    /// ```
    #[inline]
    pub fn op(&self) -> OpBuilder<'_> {
        OpBuilder::new().add(self)
    }

    /// Returns true if and only if the `self` set is disjoint with the set
    /// `stream`.
    ///
    /// `stream` must be a lexicographically ordered sequence of byte strings.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["x", "y", "z"]).unwrap();
    ///
    /// assert_eq!(set1.is_disjoint(&set2), true);
    ///
    /// let set3 = Set::from_iter(&["a", "c"]).unwrap();
    ///
    /// assert_eq!(set1.is_disjoint(&set3), false);
    /// ```
    pub fn is_disjoint<'f, I, S>(&self, stream: I) -> bool
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
        S: 'f + for<'a> Streamer<'a, Item = &'a [u8]>,
    {
        self.0.is_disjoint(StreamZeroOutput(stream.into_stream()))
    }

    /// Returns true if and only if the `self` set is a subset of `stream`.
    ///
    /// `stream` must be a lexicographically ordered sequence of byte strings.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::Set;
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["x", "y", "z"]).unwrap();
    ///
    /// assert_eq!(set1.is_subset(&set2), false);
    ///
    /// let set3 = Set::from_iter(&["a", "c"]).unwrap();
    ///
    /// assert_eq!(set1.is_subset(&set3), false);
    /// assert_eq!(set3.is_subset(&set1), true);
    /// ```
    pub fn is_subset<'f, I, S>(&self, stream: I) -> bool
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
        S: 'f + for<'a> Streamer<'a, Item = &'a [u8]>,
    {
        self.0.is_subset(StreamZeroOutput(stream.into_stream()))
    }

    /// Returns true if and only if the `self` set is a superset of `stream`.
    ///
    /// `stream` must be a lexicographically ordered sequence of byte strings.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::Set;
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["x", "y", "z"]).unwrap();
    ///
    /// assert_eq!(set1.is_superset(&set2), false);
    ///
    /// let set3 = Set::from_iter(&["a", "c"]).unwrap();
    ///
    /// assert_eq!(set1.is_superset(&set3), true);
    /// assert_eq!(set3.is_superset(&set1), false);
    /// ```
    pub fn is_superset<'f, I, S>(&self, stream: I) -> bool
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
        S: 'f + for<'a> Streamer<'a, Item = &'a [u8]>,
    {
        self.0.is_superset(StreamZeroOutput(stream.into_stream()))
    }

    /// Returns a reference to the underlying raw finite state transducer.
    #[inline]
    pub fn as_fst(&self) -> &raw::Fst<D> {
        &self.0
    }
}

impl Default for Set<Vec<u8>> {
    #[inline]
    fn default() -> Set<Vec<u8>> {
        Set::from_iter(iter::empty::<&[u8]>()).unwrap()
    }
}

impl<D: AsRef<[u8]>> fmt::Debug for Set<D> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Set([")?;
        let mut stream = self.stream();
        let mut first = true;
        while let Some(key) = stream.next() {
            if !first {
                write!(f, ", ")?;
            }
            first = false;
            write!(f, "{}", String::from_utf8_lossy(key))?;
        }
        write!(f, "])")
    }
}

/// Returns the underlying finite state transducer.
impl<D: AsRef<[u8]>> AsRef<raw::Fst<D>> for Set<D> {
    #[inline]
    fn as_ref(&self) -> &raw::Fst<D> {
        &self.0
    }
}

impl<'s, 'a, D: AsRef<[u8]>> IntoStreamer<'a> for &'s Set<D> {
    type Item = &'a [u8];
    type Into = Stream<'s>;

    #[inline]
    fn into_stream(self) -> Stream<'s> {
        Stream(self.0.stream())
    }
}

// Construct a set from an Fst object.
impl<D: AsRef<[u8]>> From<raw::Fst<D>> for Set<D> {
    #[inline]
    fn from(fst: raw::Fst<D>) -> Set<D> {
        Set(fst)
    }
}

/// A builder for creating a set.
///
/// This is not your average everyday builder. It has two important qualities
/// that make it a bit unique from what you might expect:
///
/// 1. All keys must be added in lexicographic order. Adding a key out of order
///    will result in an error.
/// 2. The representation of a set is streamed to *any* `io::Write` as it is
///    built. For an in memory representation, this can be a `Vec<u8>`.
///
/// Point (2) is especially important because it means that a set can be
/// constructed *without storing the entire set in memory*. Namely, since it
/// works with any `io::Write`, it can be streamed directly to a file.
///
/// With that said, the builder does use memory, but **memory usage is bounded
/// to a constant size**. The amount of memory used trades off with the
/// compression ratio. Currently, the implementation hard codes this trade off
/// which can result in about 5-20MB of heap usage during construction. (N.B.
/// Guaranteeing a maximal compression ratio requires memory proportional to
/// the size of the set, which defeats the benefit of streaming it to disk.
/// In practice, a small bounded amount of memory achieves close-to-minimal
/// compression ratios.)
///
/// The algorithmic complexity of set construction is `O(n)` where `n` is the
/// number of elements added to the set.
///
/// # Example: build in memory
///
/// This shows how to use the builder to construct a set in memory. Note that
/// `Set::from_iter` provides a convenience function that achieves this same
/// goal without needing to explicitly use `SetBuilder`.
///
/// ```rust
/// use fst::{IntoStreamer, Streamer, Set, SetBuilder};
///
/// let mut build = SetBuilder::memory();
/// build.insert("bruce").unwrap();
/// build.insert("clarence").unwrap();
/// build.insert("stevie").unwrap();
///
/// // You could also call `finish()` here, but since we're building the set in
/// // memory, there would be no way to get the `Vec<u8>` back.
/// let bytes = build.into_inner().unwrap();
///
/// // At this point, the set has been constructed, but here's how to read it.
/// let set = Set::new(bytes).unwrap();
/// let mut stream = set.into_stream();
/// let mut keys = vec![];
/// while let Some(key) = stream.next() {
///     keys.push(key.to_vec());
/// }
/// assert_eq!(keys, vec![
///     "bruce".as_bytes(), "clarence".as_bytes(), "stevie".as_bytes(),
/// ]);
/// ```
///
/// # Example: stream to file
///
/// This shows how to stream construction of a set to a file.
///
/// ```rust,no_run
/// use std::fs::File;
/// use std::io;
///
/// use fst::{IntoStreamer, Streamer, Set, SetBuilder};
///
/// let mut wtr = io::BufWriter::new(File::create("set.fst").unwrap());
/// let mut build = SetBuilder::new(wtr).unwrap();
/// build.insert("bruce").unwrap();
/// build.insert("clarence").unwrap();
/// build.insert("stevie").unwrap();
///
/// // If you want the writer back, then call `into_inner`. Otherwise, this
/// // will finish construction and call `flush`.
/// build.finish().unwrap();
///
/// // At this point, the set has been constructed, but here's how to read it.
/// // NOTE: Normally, one would memory map a file instead of reading its
/// // entire contents on to the heap.
/// let set = Set::new(std::fs::read("set.fst").unwrap()).unwrap();
/// let mut stream = set.into_stream();
/// let mut keys = vec![];
/// while let Some(key) = stream.next() {
///     keys.push(key.to_vec());
/// }
/// assert_eq!(keys, vec![
///     "bruce".as_bytes(), "clarence".as_bytes(), "stevie".as_bytes(),
/// ]);
/// ```
pub struct SetBuilder<W>(raw::Builder<W>);

impl SetBuilder<Vec<u8>> {
    /// Create a builder that builds a set in memory.
    #[inline]
    pub fn memory() -> SetBuilder<Vec<u8>> {
        SetBuilder(raw::Builder::memory())
    }

    /// Finishes the construction of the set and returns it.
    #[inline]
    pub fn into_set(self) -> Set<Vec<u8>> {
        Set(self.0.into_fst())
    }
}

impl<W: io::Write> SetBuilder<W> {
    /// Create a builder that builds a set by writing it to `wtr` in a
    /// streaming fashion.
    pub fn new(wtr: W) -> Result<SetBuilder<W>> {
        raw::Builder::new_type(wtr, 0).map(SetBuilder)
    }

    /// Insert a new key into the set.
    ///
    /// If a key is inserted that is less than any previous key added, then
    /// an error is returned. Similarly, if there was a problem writing to
    /// the underlying writer, an error is returned.
    pub fn insert<K: AsRef<[u8]>>(&mut self, key: K) -> Result<()> {
        self.0.add(key)
    }

    /// Calls insert on each item in the iterator.
    ///
    /// If an error occurred while adding an element, processing is stopped
    /// and the error is returned.
    pub fn extend_iter<T, I>(&mut self, iter: I) -> Result<()>
    where
        T: AsRef<[u8]>,
        I: IntoIterator<Item = T>,
    {
        for key in iter {
            self.0.add(key)?;
        }
        Ok(())
    }

    /// Calls insert on each item in the stream.
    ///
    /// Note that unlike `extend_iter`, this is not generic on the items in
    /// the stream.
    pub fn extend_stream<'f, I, S>(&mut self, stream: I) -> Result<()>
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
        S: 'f + for<'a> Streamer<'a, Item = &'a [u8]>,
    {
        self.0.extend_stream(StreamZeroOutput(stream.into_stream()))
    }

    /// Finishes the construction of the set and flushes the underlying
    /// writer. After completion, the data written to `W` may be read using
    /// one of `Set`'s constructor methods.
    pub fn finish(self) -> Result<()> {
        self.0.finish()
    }

    /// Just like `finish`, except it returns the underlying writer after
    /// flushing it.
    pub fn into_inner(self) -> Result<W> {
        self.0.into_inner()
    }

    /// Gets a reference to the underlying writer.
    pub fn get_ref(&self) -> &W {
        self.0.get_ref()
    }

    /// Returns the number of bytes written to the underlying writer
    pub fn bytes_written(&self) -> u64 {
        self.0.bytes_written()
    }
}

/// A lexicographically ordered stream of keys from a set.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct Stream<'s, A = AlwaysMatch>(raw::Stream<'s, A>)
where
    A: Automaton;

impl<'s, A: Automaton> Stream<'s, A> {
    /// Convert this stream into a vector of Unicode strings.
    ///
    /// If any key is not valid UTF-8, then iteration on the stream is stopped
    /// and a UTF-8 decoding error is returned.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_strs(self) -> Result<Vec<String>> {
        self.0.into_str_keys()
    }

    /// Convert this stream into a vector of byte strings.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_bytes(self) -> Vec<Vec<u8>> {
        self.0.into_byte_keys()
    }
}

impl<'a, 's, A: Automaton> Streamer<'a> for Stream<'s, A> {
    type Item = &'a [u8];

    fn next(&'a mut self) -> Option<&'a [u8]> {
        self.0.next().map(|(key, _)| key)
    }
}

/// A lexicographically ordered stream of key-state pairs from a set and
/// an automaton.
///
/// The keys are from the set while the states are from the automaton.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying set.
pub struct StreamWithState<'m, A = AlwaysMatch>(raw::StreamWithState<'m, A>)
where
    A: Automaton;

impl<'a, 'm, A: 'a + Automaton> Streamer<'a> for StreamWithState<'m, A>
where
    A::State: Clone,
{
    type Item = (&'a [u8], A::State);

    fn next(&'a mut self) -> Option<(&'a [u8], A::State)> {
        self.0.next().map(|(key, _, state)| (key, state))
    }
}

/// A builder for constructing range queries on streams.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `Stream`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct StreamBuilder<'s, A = AlwaysMatch>(raw::StreamBuilder<'s, A>);

impl<'s, A: Automaton> StreamBuilder<'s, A> {
    /// Specify a greater-than-or-equal-to bound.
    pub fn ge<T: AsRef<[u8]>>(self, bound: T) -> StreamBuilder<'s, A> {
        StreamBuilder(self.0.ge(bound))
    }

    /// Specify a greater-than bound.
    pub fn gt<T: AsRef<[u8]>>(self, bound: T) -> StreamBuilder<'s, A> {
        StreamBuilder(self.0.gt(bound))
    }

    /// Specify a less-than-or-equal-to bound.
    pub fn le<T: AsRef<[u8]>>(self, bound: T) -> StreamBuilder<'s, A> {
        StreamBuilder(self.0.le(bound))
    }

    /// Specify a less-than bound.
    pub fn lt<T: AsRef<[u8]>>(self, bound: T) -> StreamBuilder<'s, A> {
        StreamBuilder(self.0.lt(bound))
    }
}

impl<'s, 'a, A: Automaton> IntoStreamer<'a> for StreamBuilder<'s, A> {
    type Item = &'a [u8];
    type Into = Stream<'s, A>;

    fn into_stream(self) -> Stream<'s, A> {
        Stream(self.0.into_stream())
    }
}

/// A builder for constructing range queries on streams that include automaton
/// states.
///
/// In general, one should use `StreamBuilder` unless you have a specific need
/// for accessing the states of the underlying automaton that is being used to
/// filter this stream.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `Stream`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct StreamWithStateBuilder<'s, A = AlwaysMatch>(
    raw::StreamWithStateBuilder<'s, A>,
);

impl<'s, A: Automaton> StreamWithStateBuilder<'s, A> {
    /// Specify a greater-than-or-equal-to bound.
    pub fn ge<T: AsRef<[u8]>>(
        self,
        bound: T,
    ) -> StreamWithStateBuilder<'s, A> {
        StreamWithStateBuilder(self.0.ge(bound))
    }

    /// Specify a greater-than bound.
    pub fn gt<T: AsRef<[u8]>>(
        self,
        bound: T,
    ) -> StreamWithStateBuilder<'s, A> {
        StreamWithStateBuilder(self.0.gt(bound))
    }

    /// Specify a less-than-or-equal-to bound.
    pub fn le<T: AsRef<[u8]>>(
        self,
        bound: T,
    ) -> StreamWithStateBuilder<'s, A> {
        StreamWithStateBuilder(self.0.le(bound))
    }

    /// Specify a less-than bound.
    pub fn lt<T: AsRef<[u8]>>(
        self,
        bound: T,
    ) -> StreamWithStateBuilder<'s, A> {
        StreamWithStateBuilder(self.0.lt(bound))
    }
}

impl<'s, 'a, A: 'a + Automaton> IntoStreamer<'a>
    for StreamWithStateBuilder<'s, A>
where
    A::State: Clone,
{
    type Item = (&'a [u8], A::State);
    type Into = StreamWithState<'s, A>;

    fn into_stream(self) -> StreamWithState<'s, A> {
        StreamWithState(self.0.into_stream())
    }
}

/// A builder for collecting set streams on which to perform set operations.
///
/// Set operations include intersection, union, difference and symmetric
/// difference. The result of each set operation is itself a stream that emits
/// keys in lexicographic order.
///
/// All set operations work efficiently on an arbitrary number of
/// streams with memory proportional to the number of streams.
///
/// The algorithmic complexity of all set operations is `O(n1 + n2 + n3 + ...)`
/// where `n1, n2, n3, ...` correspond to the number of elements in each
/// stream.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct OpBuilder<'s>(raw::OpBuilder<'s>);

impl<'s> OpBuilder<'s> {
    /// Create a new set operation builder.
    #[inline]
    pub fn new() -> OpBuilder<'s> {
        OpBuilder(raw::OpBuilder::new())
    }

    /// Add a stream to this set operation.
    ///
    /// This is useful for a chaining style pattern, e.g.,
    /// `builder.add(stream1).add(stream2).union()`.
    ///
    /// The stream must emit a lexicographically ordered sequence of byte
    /// strings.
    pub fn add<I, S>(mut self, streamable: I) -> OpBuilder<'s>
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
        S: 's + for<'a> Streamer<'a, Item = &'a [u8]>,
    {
        self.push(streamable);
        self
    }

    /// Add a stream to this set operation.
    ///
    /// The stream must emit a lexicographically ordered sequence of byte
    /// strings.
    pub fn push<I, S>(&mut self, streamable: I)
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
        S: 's + for<'a> Streamer<'a, Item = &'a [u8]>,
    {
        self.0.push(StreamZeroOutput(streamable.into_stream()));
    }

    /// Performs a union operation on all streams that have been added.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["a", "y", "z"]).unwrap();
    ///
    /// let mut union = set1.op().add(&set2).union();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = union.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"a", b"b", b"c", b"y", b"z"]);
    /// ```
    #[inline]
    pub fn union(self) -> Union<'s> {
        Union(self.0.union())
    }

    /// Performs an intersection operation on all streams that have been added.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["a", "y", "z"]).unwrap();
    ///
    /// let mut intersection = set1.op().add(&set2).intersection();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = intersection.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"a"]);
    /// ```
    #[inline]
    pub fn intersection(self) -> Intersection<'s> {
        Intersection(self.0.intersection())
    }

    /// Performs a difference operation with respect to the first stream added.
    /// That is, this returns a stream of all elements in the first stream
    /// that don't exist in any other stream that has been added.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["a", "y", "z"]).unwrap();
    ///
    /// let mut difference = set1.op().add(&set2).difference();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = difference.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"b", b"c"]);
    /// ```
    #[inline]
    pub fn difference(self) -> Difference<'s> {
        Difference(self.0.difference())
    }

    /// Performs a symmetric difference operation on all of the streams that
    /// have been added.
    ///
    /// When there are only two streams, then the keys returned correspond to
    /// keys that are in either stream but *not* in both streams.
    ///
    /// More generally, for any number of streams, keys that occur in an odd
    /// number of streams are returned.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fst::{IntoStreamer, Streamer, Set};
    ///
    /// let set1 = Set::from_iter(&["a", "b", "c"]).unwrap();
    /// let set2 = Set::from_iter(&["a", "y", "z"]).unwrap();
    ///
    /// let mut sym_difference = set1.op().add(&set2).symmetric_difference();
    ///
    /// let mut keys = vec![];
    /// while let Some(key) = sym_difference.next() {
    ///     keys.push(key.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"b", b"c", b"y", b"z"]);
    /// ```
    #[inline]
    pub fn symmetric_difference(self) -> SymmetricDifference<'s> {
        SymmetricDifference(self.0.symmetric_difference())
    }
}

impl<'f, I, S> Extend<I> for OpBuilder<'f>
where
    I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
    S: 'f + for<'a> Streamer<'a, Item = &'a [u8]>,
{
    fn extend<T>(&mut self, it: T)
    where
        T: IntoIterator<Item = I>,
    {
        for stream in it {
            self.push(stream);
        }
    }
}

impl<'f, I, S> FromIterator<I> for OpBuilder<'f>
where
    I: for<'a> IntoStreamer<'a, Into = S, Item = &'a [u8]>,
    S: 'f + for<'a> Streamer<'a, Item = &'a [u8]>,
{
    fn from_iter<T>(it: T) -> OpBuilder<'f>
    where
        T: IntoIterator<Item = I>,
    {
        let mut op = OpBuilder::new();
        op.extend(it);
        op
    }
}

/// A stream of set union over multiple streams in lexicographic order.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct Union<'s>(raw::Union<'s>);

impl<'a, 's> Streamer<'a> for Union<'s> {
    type Item = &'a [u8];

    #[inline]
    fn next(&'a mut self) -> Option<&'a [u8]> {
        self.0.next().map(|(key, _)| key)
    }
}

/// A stream of set intersection over multiple streams in lexicographic order.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct Intersection<'s>(raw::Intersection<'s>);

impl<'a, 's> Streamer<'a> for Intersection<'s> {
    type Item = &'a [u8];

    #[inline]
    fn next(&'a mut self) -> Option<&'a [u8]> {
        self.0.next().map(|(key, _)| key)
    }
}

/// A stream of set difference over multiple streams in lexicographic order.
///
/// The difference operation is taken with respect to the first stream and the
/// rest of the streams. i.e., All elements in the first stream that do not
/// appear in any other streams.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct Difference<'s>(raw::Difference<'s>);

impl<'a, 's> Streamer<'a> for Difference<'s> {
    type Item = &'a [u8];

    #[inline]
    fn next(&'a mut self) -> Option<&'a [u8]> {
        self.0.next().map(|(key, _)| key)
    }
}

/// A stream of set symmetric difference over multiple streams in lexicographic
/// order.
///
/// The `'s` lifetime parameter refers to the lifetime of the underlying set.
pub struct SymmetricDifference<'s>(raw::SymmetricDifference<'s>);

impl<'a, 's> Streamer<'a> for SymmetricDifference<'s> {
    type Item = &'a [u8];

    #[inline]
    fn next(&'a mut self) -> Option<&'a [u8]> {
        self.0.next().map(|(key, _)| key)
    }
}

/// A specialized stream for mapping set streams (`&[u8]`) to streams used
/// by raw fsts (`(&[u8], Output)`).
///
/// If this were iterators, we could use `iter::Map`, but doing this on streams
/// requires HKT, so we need to write out the monomorphization ourselves.
struct StreamZeroOutput<S>(S);

impl<'a, S: Streamer<'a>> Streamer<'a> for StreamZeroOutput<S> {
    type Item = (S::Item, raw::Output);

    fn next(&'a mut self) -> Option<(S::Item, raw::Output)> {
        self.0.next().map(|key| (key, raw::Output::zero()))
    }
}

#[cfg(test)]
mod tests {
    use super::OpBuilder;
    use crate::Streamer;

    #[test]
    fn no_fsts() {
        struct Iter<'a> {
            i: usize,
            xs: Vec<&'a [u8]>,
        }

        impl<'a> Iter<'a> {
            fn new(xs: Vec<&'a [u8]>) -> Iter<'a> {
                Iter { i: 0, xs }
            }
        }

        impl<'a, 's> Streamer<'a> for Iter<'s> {
            type Item = &'a [u8];
            fn next(&'a mut self) -> Option<&'a [u8]> {
                if self.i >= self.xs.len() {
                    None
                } else {
                    let i = self.i;
                    self.i += 1;
                    Some(self.xs[i])
                }
            }
        }

        let mut stream = OpBuilder::new()
            .add(Iter::new(vec![
                &b"bar"[..],
                &b"baz"[..],
                &b"foo"[..],
                &b"fubar"[..],
                &b"quux"[..],
            ]))
            .add(Iter::new(vec![&b"bar"[..], &b"foofoo"[..], &b"fubar"[..]]))
            .intersection();

        let mut got = vec![];
        while let Some(x) = stream.next() {
            got.push(x.to_vec());
        }
        assert_eq!(got, vec![&b"bar"[..], &b"fubar"[..]]);
    }
}