1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
extern crate fst;
extern crate utf8_ranges;

use std::cmp;
use std::collections::{HashMap, HashSet};
use std::collections::hash_map::Entry;
use std::fmt;

use utf8_ranges::{Utf8Range, Utf8Sequences};

use fst::automaton::Automaton;

pub use self::error::Error;

mod error;

const STATE_LIMIT: usize = 10_000; // currently at least 20MB >_<

/// A Unicode aware Levenshtein automaton for running efficient fuzzy queries.
///
/// A Levenshtein automata is one way to search any finite state transducer
/// for keys that *approximately* match a given query. A Levenshtein automaton
/// approximates this by returning all keys within a certain edit distance of
/// the query. The edit distance is defined by the number of insertions,
/// deletions and substitutions required to turn the query into the key.
/// Insertions, deletions and substitutions are based on
/// **Unicode characters** (where each character is a single Unicode scalar
/// value).
///
/// # Example
///
/// This example shows how to find all keys within an edit distance of `1`
/// from `foo`.
///
/// ```rust
/// extern crate fst;
/// extern crate fst_levenshtein;
///
/// use fst::{IntoStreamer, Streamer, Set};
/// use fst_levenshtein::Levenshtein;
///
/// fn main() {
///     let keys = vec!["fa", "fo", "fob", "focus", "foo", "food", "foul"];
///     let set = Set::from_iter(keys).unwrap();
///
///     let lev = Levenshtein::new("foo", 1).unwrap();
///     let mut stream = set.search(&lev).into_stream();
///
///     let mut keys = vec![];
///     while let Some(key) = stream.next() {
///         keys.push(key.to_vec());
///     }
///     assert_eq!(keys, vec![
///         "fo".as_bytes(),   // 1 deletion
///         "fob".as_bytes(),  // 1 substitution
///         "foo".as_bytes(),  // 0 insertions/deletions/substitutions
///         "food".as_bytes(), // 1 insertion
///     ]);
/// }
/// ```
///
/// This example only uses ASCII characters, but it will work equally well
/// on Unicode characters.
///
/// # Warning: experimental
///
/// While executing this Levenshtein automaton against a finite state
/// transducer will be very fast, *constructing* an automaton may not be.
/// Namely, this implementation is a proof of concept. While I believe the
/// algorithmic complexity is not exponential, the implementation is not speedy
/// and it can use enormous amounts of memory (tens of MB before a hard-coded
/// limit will cause an error to be returned).
///
/// This is important functionality, so one should count on this implementation
/// being vastly improved in the future.
pub struct Levenshtein {
    prog: DynamicLevenshtein,
    dfa: Dfa,
}

impl Levenshtein {
    /// Create a new Levenshtein query.
    ///
    /// The query finds all matching terms that are at most `distance`
    /// edit operations from `query`. (An edit operation may be an insertion,
    /// a deletion or a substitution.)
    ///
    /// If the underlying automaton becomes too big, then an error is returned.
    ///
    /// A `Levenshtein` value satisfies the `Automaton` trait, which means it
    /// can be used with the `search` method of any finite state transducer.
    pub fn new(query: &str, distance: u32) -> Result<Self, Error> {
        let lev = DynamicLevenshtein {
            query: query.to_owned(),
            dist: distance as usize,
        };
        let dfa = DfaBuilder::new(lev.clone()).build()?;
        Ok(Levenshtein {
            prog: lev,
            dfa: dfa,
        })
    }
}

impl fmt::Debug for Levenshtein {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Levenshtein(query: {:?}, distance: {:?})",
               self.prog.query, self.prog.dist)
    }
}

#[derive(Clone)]
struct DynamicLevenshtein {
    query: String,
    dist: usize,
}

impl DynamicLevenshtein {
    fn start(&self) -> Vec<usize> {
        (0..self.query.chars().count()+1).collect()
    }

    fn is_match(&self, state: &[usize]) -> bool {
        state.last().map(|&n| n <= self.dist).unwrap_or(false)
    }

    fn can_match(&self, state: &[usize]) -> bool {
        state.iter().min().map(|&n| n <= self.dist).unwrap_or(false)
    }

    fn accept(&self, state: &[usize], chr: Option<char>) -> Vec<usize> {
        let mut next = vec![state[0]+1];
        for (i, c) in self.query.chars().enumerate() {
            let cost = if Some(c) == chr { 0 } else { 1 };
            let v = cmp::min(cmp::min(next[i]+1, state[i+1]+1), state[i]+cost);
            next.push(cmp::min(v, self.dist + 1));
        }
        next
    }
}

impl Automaton for Levenshtein {
    type State = Option<usize>;

    fn start(&self) -> Option<usize> { Some(0) }

    fn is_match(&self, state: &Option<usize>) -> bool {
        state.map(|state| self.dfa.states[state].is_match).unwrap_or(false)
    }

    fn can_match(&self, state: &Option<usize>) -> bool {
        state.is_some()
    }

    fn accept(&self, state: &Option<usize>, byte: u8) -> Option<usize> {
        state.and_then(|state| self.dfa.states[state].next[byte as usize])
    }
}

#[derive(Debug)]
pub struct Dfa {
    states: Vec<State>,
}

struct State {
    next: [Option<usize>; 256],
    is_match: bool,
}

impl fmt::Debug for State {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "State {{")?;
        writeln!(f, "  is_match: {:?}", self.is_match)?;
        for i in 0..256 {
            if let Some(si) = self.next[i] {
                writeln!(f, "  {:?}: {:?}", i, si)?;
            }
        }
        write!(f, "}}")
    }
}

struct DfaBuilder {
    dfa: Dfa,
    lev: DynamicLevenshtein,
    cache: HashMap<Vec<usize>, usize>,
}

impl DfaBuilder {
    fn new(lev: DynamicLevenshtein) -> Self {
        DfaBuilder {
            dfa: Dfa {
                states: Vec::with_capacity(16),
            },
            lev: lev,
            cache: HashMap::with_capacity(1024),
        }
    }

    fn build(mut self) -> Result<Dfa, Error> {
        let mut stack = vec![self.lev.start()];
        let mut seen = HashSet::new();
        let query = self.lev.query.clone(); // temp work around of borrowck
        while let Some(lev_state) = stack.pop() {
            let dfa_si = self.cached_state(&lev_state).unwrap();
            let mismatch = self.add_mismatch_utf8_states(dfa_si, &lev_state);
            if let Some((next_si, lev_next)) = mismatch {
                if !seen.contains(&next_si) {
                    seen.insert(next_si);
                    stack.push(lev_next);
                }
            }
            for (i, c) in query.chars().enumerate() {
                if lev_state[i] > self.lev.dist {
                    continue;
                }
                let lev_next = self.lev.accept(&lev_state, Some(c));
                let next_si = self.cached_state(&lev_next);
                if let Some(next_si) = next_si {
                    self.add_utf8_sequences(true, dfa_si, next_si, c, c);
                    if !seen.contains(&next_si) {
                        seen.insert(next_si);
                        stack.push(lev_next);
                    }
                }
            }
            if self.dfa.states.len() > STATE_LIMIT {
                return Err(Error::TooManyStates(STATE_LIMIT));
            }
        }
        Ok(self.dfa)
    }

    fn cached_state(&mut self, lev_state: &[usize]) -> Option<usize> {
        self.cached(lev_state).map(|(si, _)| si)
    }

    fn cached(&mut self, lev_state: &[usize]) -> Option<(usize, bool)> {
        if !self.lev.can_match(lev_state) {
            return None;
        }
        Some(match self.cache.entry(lev_state.to_vec()) {
            Entry::Occupied(v) => (*v.get(), true),
            Entry::Vacant(v) => {
                let is_match = self.lev.is_match(lev_state);
                self.dfa.states.push(State {
                    next: [None; 256],
                    is_match: is_match,
                });
                (*v.insert(self.dfa.states.len() - 1), false)
            }
        })
    }

    fn add_mismatch_utf8_states(
        &mut self,
        from_si: usize,
        lev_state: &[usize],
    ) -> Option<(usize, Vec<usize>)> {
        let mismatch_state = self.lev.accept(lev_state, None);
        let to_si = match self.cached(&mismatch_state) {
            None => return None,
            Some((si, _)) => si,
            // Some((si, true)) => return Some((si, mismatch_state)),
            // Some((si, false)) => si,
        };
        self.add_utf8_sequences(false, from_si, to_si, '\u{0}', '\u{10FFFF}');
        return Some((to_si, mismatch_state));
    }

    fn add_utf8_sequences(
        &mut self,
        overwrite: bool,
        from_si: usize,
        to_si: usize,
        from_chr: char,
        to_chr: char,
    ) {
        for seq in Utf8Sequences::new(from_chr, to_chr) {
            let mut fsi = from_si;
            for range in &seq.as_slice()[0..seq.len()-1] {
                let tsi = self.new_state(false);
                self.add_utf8_range(overwrite, fsi, tsi, range);
                fsi = tsi;
            }
            self.add_utf8_range(
                overwrite, fsi, to_si, &seq.as_slice()[seq.len()-1]);
        }
    }

    fn add_utf8_range(
        &mut self,
        overwrite: bool,
        from: usize,
        to: usize,
        range: &Utf8Range,
    ) {
        for b in range.start as usize..range.end as usize + 1 {
            if overwrite || self.dfa.states[from].next[b].is_none() {
                self.dfa.states[from].next[b] = Some(to);
            }
        }
    }

    fn new_state(&mut self, is_match: bool) -> usize {
        self.dfa.states.push(State {
            next: [None; 256],
            is_match: is_match,
        });
        self.dfa.states.len() - 1
    }
}